refactor reduce run: move calc out and split functags/v1.0.0
| @@ -19,8 +19,8 @@ | |||
| #include "nnacl/errorcode.h" | |||
| int ReduceMeanFp16(const int outer_size, const int inner_size, const int axis_size, const float16_t *src_data, | |||
| const int *src_shape, float16_t *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| float16_t *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -26,7 +26,7 @@ | |||
| extern "C" { | |||
| #endif | |||
| int ReduceMeanFp16(const int outer_size, const int inner_size, const int axis_size, const float16_t *src_data, | |||
| const int *src_shape, float16_t *dst_data, const int tid, const int thread_num); | |||
| float16_t *dst_data, const int tid, const int thread_num); | |||
| #ifdef __cplusplus | |||
| } | |||
| @@ -18,9 +18,9 @@ | |||
| #include "nnacl/fp32/reduce.h" | |||
| #include "nnacl/errorcode.h" | |||
| int ReduceMean(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| int ReduceMean(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -39,9 +39,9 @@ int ReduceMean(const int outer_size, const int inner_size, const int axis_size, | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| int ReduceSum(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| int ReduceSum(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -60,9 +60,9 @@ int ReduceSum(const int outer_size, const int inner_size, const int axis_size, c | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| int ReduceMax(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| int ReduceMax(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -81,9 +81,9 @@ int ReduceMax(const int outer_size, const int inner_size, const int axis_size, c | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| int ReduceMin(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| int ReduceMin(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -102,9 +102,9 @@ int ReduceMin(const int outer_size, const int inner_size, const int axis_size, c | |||
| } | |||
| return NNACL_OK; | |||
| } | |||
| int ReduceProd(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| int ReduceProd(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -124,8 +124,8 @@ int ReduceProd(const int outer_size, const int inner_size, const int axis_size, | |||
| return NNACL_OK; | |||
| } | |||
| int ReduceSumSquare(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || src_shape == NULL || dst_data == NULL) { | |||
| float *dst_data, const int tid, const int thread_num) { | |||
| if (src_data == NULL || dst_data == NULL) { | |||
| return NNACL_NULL_PTR; | |||
| } | |||
| int i, j, k; | |||
| @@ -22,18 +22,18 @@ | |||
| #ifdef __cplusplus | |||
| extern "C" { | |||
| #endif | |||
| int ReduceMean(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| int ReduceSum(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| int ReduceMax(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| int ReduceMin(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| int ReduceProd(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| int ReduceMean(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num); | |||
| int ReduceSum(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num); | |||
| int ReduceMax(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num); | |||
| int ReduceMin(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num); | |||
| int ReduceProd(const int outer_size, const int inner_size, const int axis_size, const float *src_data, float *dst_data, | |||
| const int tid, const int thread_num); | |||
| int ReduceSumSquare(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| float *dst_data, const int tid, const int thread_num); | |||
| #ifdef __cplusplus | |||
| } | |||
| #endif | |||
| @@ -120,7 +120,54 @@ int ReduceBaseCPUKernel::Init() { | |||
| return RET_OK; | |||
| } | |||
| int ReduceBaseCPUKernel::ReSize() { return CheckParameters(); } | |||
| void ReduceBaseCPUKernel::CalculateInnerOuterSize() { | |||
| outer_sizes_.clear(); | |||
| inner_sizes_.clear(); | |||
| axis_sizes_.clear(); | |||
| auto tmp_shape = in_tensors_.at(0)->shape(); | |||
| for (auto i = 0; i < num_axes_; ++i) { | |||
| int axis = axes_[i]; | |||
| auto outer_size = 1; | |||
| for (int j = 0; j < axis; j++) { | |||
| outer_size *= tmp_shape[j]; | |||
| } | |||
| outer_sizes_.emplace_back(outer_size); | |||
| auto inner_size = 1; | |||
| for (int k = axis + 1; k < static_cast<int>(tmp_shape.size()); k++) { | |||
| inner_size *= tmp_shape[k]; | |||
| } | |||
| inner_sizes_.emplace_back(inner_size); | |||
| axis_sizes_.emplace_back(tmp_shape[axis]); | |||
| tmp_shape[axis] = 1; | |||
| } | |||
| } | |||
| void ReduceBaseCPUKernel::CalculateTmpBufferSize() { | |||
| buffer_sizes_.clear(); | |||
| auto input_shape = in_tensors_.at(0)->shape(); | |||
| for (auto i = 0; i < num_axes_; i++) { | |||
| int axis = axes_[i]; | |||
| size_t size = 1; | |||
| for (size_t j = 0; j < input_shape.size(); j++) { | |||
| if (axis != static_cast<int>(j)) { | |||
| size *= input_shape[j]; | |||
| } | |||
| } | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| buffer_sizes_.emplace_back(size); | |||
| input_shape[axis] = 1; | |||
| } | |||
| } | |||
| int ReduceBaseCPUKernel::ReSize() { | |||
| auto ret = CheckParameters(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| CalculateTmpBufferSize(); | |||
| CalculateInnerOuterSize(); | |||
| return RET_OK; | |||
| } | |||
| kernel::LiteKernel *CpuReduceFp32KernelCreator(const std::vector<lite::Tensor *> &inputs, | |||
| const std::vector<lite::Tensor *> &outputs, OpParameter *opParameter, | |||
| @@ -45,10 +45,15 @@ class ReduceBaseCPUKernel : public LiteKernel { | |||
| bool reduce_to_end_; | |||
| protected: | |||
| void CalculateTmpBufferSize(); | |||
| void CalculateInnerOuterSize(); | |||
| std::vector<size_t> buffer_sizes_; | |||
| std::vector<int> outer_sizes_; | |||
| std::vector<int> inner_sizes_; | |||
| std::vector<int> axis_sizes_; | |||
| int outer_size_; | |||
| int inner_size_; | |||
| int axis_size_; | |||
| std::vector<int> tmp_shape_; | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -60,8 +60,8 @@ int ReduceFp16CPUKernel::Init() { | |||
| int ReduceFp16CPUKernel::ReSize() { return ReduceBaseCPUKernel::ReSize(); } | |||
| int ReduceFp16CPUKernel::CallReduceUnit(int task_id) { | |||
| auto ret = reducer_(outer_size_, inner_size_, axis_size_, fp16_src_data_, tmp_shape_.data(), fp16_dst_data_, task_id, | |||
| context_->thread_num_); | |||
| auto ret = | |||
| reducer_(outer_size_, inner_size_, axis_size_, fp16_src_data_, fp16_dst_data_, task_id, context_->thread_num_); | |||
| return ret; | |||
| } | |||
| @@ -88,7 +88,6 @@ int ReduceFp16CPUKernel::Run() { | |||
| return ret; | |||
| } | |||
| tmp_shape_ = in_tensors_.at(0)->shape(); | |||
| auto in_tensor = in_tensors_.at(0); | |||
| if (in_tensor->data_type() == kNumberTypeFloat32 || in_tensor->data_type() == kNumberTypeFloat) { | |||
| auto input_data = reinterpret_cast<float *>(in_tensor->MutableData()); | |||
| @@ -100,23 +99,15 @@ int ReduceFp16CPUKernel::Run() { | |||
| fp16_src_data_ = fp16_input_; | |||
| for (int i = 0; i < data_buffers_.size(); ++i) { | |||
| fp16_dst_data_ = data_buffers_[i]; | |||
| int axis = axes_[i]; | |||
| outer_size_ = 1; | |||
| for (int j = 0; j < axis; j++) { | |||
| outer_size_ *= tmp_shape_[j]; | |||
| } | |||
| inner_size_ = 1; | |||
| for (int k = axis + 1; k < static_cast<int>(tmp_shape_.size()); k++) { | |||
| inner_size_ *= tmp_shape_[k]; | |||
| } | |||
| axis_size_ = tmp_shape_[axis]; | |||
| outer_size_ = outer_sizes_[i]; | |||
| inner_size_ = inner_sizes_[i]; | |||
| axis_size_ = axis_sizes_[i]; | |||
| auto error_code = ParallelLaunch(THREAD_POOL_DEFAULT, ReduceImpl, this, context_->thread_num_); | |||
| if (error_code != RET_OK) { | |||
| FreeTmpBuffer(); | |||
| MS_LOG(ERROR) << "Reduce run error, error_code[" << error_code << "]"; | |||
| return RET_ERROR; | |||
| } | |||
| tmp_shape_[axis] = 1; | |||
| fp16_src_data_ = fp16_dst_data_; | |||
| } | |||
| @@ -151,22 +142,14 @@ void ReduceFp16CPUKernel::FreeTmpBuffer() { | |||
| } | |||
| int ReduceFp16CPUKernel::MallocTmpBuffer() { | |||
| auto input_shape = in_tensors_.at(0)->shape(); | |||
| for (auto i = 0; i < num_axes_; i++) { | |||
| int axis = axes_[i]; | |||
| size_t size = 1; | |||
| for (auto j = 0; j < input_shape.size(); j++) { | |||
| if (static_cast<size_t>(axis) != j) { | |||
| size *= input_shape[j]; | |||
| } | |||
| } | |||
| data_buffers_.clear(); | |||
| for (auto size : buffer_sizes_) { | |||
| float16_t *buffer = reinterpret_cast<float16_t *>(context_->allocator->Malloc(size * sizeof(float16_t))); | |||
| if (buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc data failed"; | |||
| return RET_ERROR; | |||
| } | |||
| data_buffers_.emplace_back(buffer); | |||
| input_shape[axis] = 1; | |||
| } | |||
| auto in_tensor = in_tensors_.front(); | |||
| @@ -27,7 +27,7 @@ using mindspore::schema::ReduceMode; | |||
| namespace mindspore::kernel { | |||
| class ReduceFp16CPUKernel : public ReduceBaseCPUKernel { | |||
| typedef int (*Reducer)(const int outer_size, const int inner_size, const int axis_size, const float16_t *src_data, | |||
| const int *src_shape, float16_t *dst_data, const int tid, const int thread_num); | |||
| float16_t *dst_data, const int tid, const int thread_num); | |||
| public: | |||
| ReduceFp16CPUKernel(OpParameter *param, const std::vector<lite::Tensor *> &inputs, | |||
| @@ -81,17 +81,10 @@ int ReduceCPUKernel::Init() { | |||
| return ReSize(); | |||
| } | |||
| int ReduceCPUKernel::ReSize() { | |||
| auto ret = ReduceBaseCPUKernel::ReSize(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| return MallocTmpBuffer(); | |||
| } | |||
| int ReduceCPUKernel::ReSize() { return ReduceBaseCPUKernel::ReSize(); } | |||
| int ReduceCPUKernel::CallReduceUnit(int task_id) { | |||
| auto ret = reducer_(outer_size_, inner_size_, axis_size_, src_data_, tmp_shape_.data(), dst_data_, task_id, | |||
| context_->thread_num_); | |||
| auto ret = reducer_(outer_size_, inner_size_, axis_size_, src_data_, dst_data_, task_id, context_->thread_num_); | |||
| return ret; | |||
| } | |||
| @@ -111,75 +104,55 @@ int ReduceCPUKernel::Run() { | |||
| MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret; | |||
| return prepare_ret; | |||
| } | |||
| tmp_shape_ = in_tensors_.at(0)->shape(); | |||
| auto ret = MallocTmpBuffer(); | |||
| if (ret != RET_OK) { | |||
| FreeTmpBuffer(); | |||
| return ret; | |||
| } | |||
| src_data_ = static_cast<float *>(in_tensors_.at(0)->MutableData()); | |||
| for (size_t i = 0; i < data_buffers_.size(); ++i) { | |||
| dst_data_ = data_buffers_[i]; | |||
| int axis = axes_[i]; | |||
| outer_size_ = 1; | |||
| for (int j = 0; j < axis; j++) { | |||
| outer_size_ *= tmp_shape_[j]; | |||
| for (size_t i = 0; i < static_cast<size_t>(num_axes_); ++i) { | |||
| if (i != static_cast<size_t>(num_axes_ - 1)) { | |||
| dst_data_ = data_buffers_[i]; | |||
| } else { | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||
| } | |||
| inner_size_ = 1; | |||
| for (int k = axis + 1; k < static_cast<int>(tmp_shape_.size()); k++) { | |||
| inner_size_ *= tmp_shape_[k]; | |||
| } | |||
| axis_size_ = tmp_shape_[axis]; | |||
| outer_size_ = outer_sizes_[i]; | |||
| inner_size_ = inner_sizes_[i]; | |||
| axis_size_ = axis_sizes_[i]; | |||
| auto error_code = ParallelLaunch(THREAD_POOL_DEFAULT, ReduceImpl, this, context_->thread_num_); | |||
| if (error_code != RET_OK) { | |||
| MS_LOG(ERROR) << "Reduce run error, error_code[" << error_code << "]"; | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| tmp_shape_[axis] = 1; | |||
| src_data_ = dst_data_; | |||
| } | |||
| int last_reduce_axis = axes_[num_axes_ - 1]; | |||
| outer_size_ = 1; | |||
| for (int i = 0; i < last_reduce_axis; i++) { | |||
| outer_size_ *= tmp_shape_[i]; | |||
| } | |||
| inner_size_ = 1; | |||
| for (int i = last_reduce_axis + 1; i < static_cast<int>(tmp_shape_.size()); i++) { | |||
| inner_size_ *= tmp_shape_[i]; | |||
| } | |||
| axis_size_ = tmp_shape_[last_reduce_axis]; | |||
| dst_data_ = reinterpret_cast<float *>(out_tensors_.at(0)->MutableData()); | |||
| auto error_code = ParallelLaunch(THREAD_POOL_DEFAULT, ReduceImpl, this, context_->thread_num_); | |||
| if (error_code != RET_OK) { | |||
| MS_LOG(ERROR) << "Reduce run error, error_code[" << error_code << "]"; | |||
| return RET_ERROR; | |||
| } | |||
| FreeTmpBuffer(); | |||
| return RET_OK; | |||
| } | |||
| int ReduceCPUKernel::MallocTmpBuffer() { | |||
| for (auto buffer : data_buffers_) { | |||
| if (buffer != nullptr) { | |||
| free(buffer); | |||
| buffer = nullptr; | |||
| } | |||
| } | |||
| data_buffers_.clear(); | |||
| auto input_shape = in_tensors_.at(0)->shape(); | |||
| for (auto i = 0; i < num_axes_ - 1; i++) { | |||
| int axis = axes_[i]; | |||
| size_t size = 1; | |||
| for (size_t j = 0; j < input_shape.size(); j++) { | |||
| if (axis != static_cast<int>(j)) { | |||
| size *= input_shape[j]; | |||
| } | |||
| } | |||
| float *buffer = reinterpret_cast<float *>(malloc(size * sizeof(float))); | |||
| for (auto size : buffer_sizes_) { | |||
| float *buffer = reinterpret_cast<float *>(context_->allocator->Malloc(size * sizeof(float))); | |||
| if (buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc data failed."; | |||
| return RET_ERROR; | |||
| } | |||
| data_buffers_.emplace_back(buffer); | |||
| input_shape[axis] = 1; | |||
| } | |||
| return RET_OK; | |||
| } | |||
| void ReduceCPUKernel::FreeTmpBuffer() { | |||
| for (size_t i = 0; i < data_buffers_.size(); i++) { | |||
| float *buffer = data_buffers_[i]; | |||
| if (buffer != nullptr) { | |||
| context_->allocator->Free(buffer); | |||
| buffer = nullptr; | |||
| } | |||
| } | |||
| data_buffers_.clear(); | |||
| } | |||
| } // namespace mindspore::kernel | |||
| @@ -28,7 +28,7 @@ using mindspore::schema::ReduceMode; | |||
| namespace mindspore::kernel { | |||
| class ReduceCPUKernel : public ReduceBaseCPUKernel { | |||
| typedef int (*Reducer)(const int outer_size, const int inner_size, const int axis_size, const float *src_data, | |||
| const int *src_shape, float *dst_data, const int tid, const int thread_num); | |||
| float *dst_data, const int tid, const int thread_num); | |||
| public: | |||
| ReduceCPUKernel(OpParameter *param, const std::vector<lite::Tensor *> &inputs, | |||
| @@ -36,13 +36,7 @@ class ReduceCPUKernel : public ReduceBaseCPUKernel { | |||
| const mindspore::lite::PrimitiveC *primitive) | |||
| : ReduceBaseCPUKernel(param, inputs, outputs, ctx, primitive) {} | |||
| ~ReduceCPUKernel() { | |||
| for (size_t i = 0; i < data_buffers_.size(); i++) { | |||
| float *buffer = data_buffers_[i]; | |||
| if (buffer != nullptr) { | |||
| free(buffer); | |||
| buffer = nullptr; | |||
| } | |||
| } | |||
| FreeTmpBuffer(); | |||
| src_data_ = nullptr; | |||
| dst_data_ = nullptr; | |||
| } | |||
| @@ -60,6 +54,7 @@ class ReduceCPUKernel : public ReduceBaseCPUKernel { | |||
| private: | |||
| int MallocTmpBuffer(); | |||
| void FreeTmpBuffer(); | |||
| }; | |||
| } // namespace mindspore::kernel | |||
| @@ -39,10 +39,6 @@ int ReduceInt8CPUKernel::Init() { | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| ret = MallocTmpBuffer(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| } | |||
| ret = CalculateQuantArgs(); | |||
| if (ret != RET_OK) { | |||
| return ret; | |||
| @@ -179,23 +175,15 @@ int ReduceInt8CPUKernel::CalculateQuantArgs() { | |||
| } | |||
| int ReduceInt8CPUKernel::MallocTmpBuffer() { | |||
| auto input_shape = in_tensors_.at(0)->shape(); | |||
| for (auto i = 0; i < num_axes_ - 1; i++) { | |||
| int axis = axes_[i]; | |||
| size_t size = 1; | |||
| for (size_t j = 0; j < input_shape.size(); j++) { | |||
| if (axis != static_cast<int>(j)) { | |||
| size *= input_shape[j]; | |||
| } | |||
| } | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| int32_t *buffer = reinterpret_cast<int32_t *>(context_->allocator->Malloc(size * sizeof(int32_t))); | |||
| data_buffers_.clear(); | |||
| MS_ASSERT(static_cast<int>(buffer_sizes_.size()) == num_axes_ - 1); | |||
| for (auto buffer_size : buffer_sizes_) { | |||
| int32_t *buffer = reinterpret_cast<int32_t *>(context_->allocator->Malloc(buffer_size * sizeof(int32_t))); | |||
| if (buffer == nullptr) { | |||
| MS_LOG(ERROR) << "Malloc data failed."; | |||
| return RET_ERROR; | |||
| } | |||
| data_buffers_.emplace_back(buffer); | |||
| input_shape[axis] = 1; | |||
| } | |||
| auto input = in_tensors_.at(0); | |||
| @@ -203,17 +191,13 @@ int ReduceInt8CPUKernel::MallocTmpBuffer() { | |||
| if (begin_src_data_ == nullptr) { | |||
| return RET_NULL_PTR; | |||
| } | |||
| auto input_data = reinterpret_cast<int8_t *>(input->MutableData()); | |||
| for (auto i = 0; i < input->ElementsNum(); i++) { | |||
| begin_src_data_[i] = static_cast<int32_t>(input_data[i]); | |||
| } | |||
| return RET_OK; | |||
| } | |||
| void ReduceInt8CPUKernel::FreeTmpBuffer() { | |||
| for (auto buffer : data_buffers_) { | |||
| if (buffer != nullptr) { | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| context_->allocator->Free(buffer); | |||
| buffer = nullptr; | |||
| } | |||
| @@ -221,20 +205,12 @@ void ReduceInt8CPUKernel::FreeTmpBuffer() { | |||
| data_buffers_.clear(); | |||
| if (begin_src_data_ != nullptr) { | |||
| MS_ASSERT(context_->allocator != nullptr); | |||
| context_->allocator->Free(begin_src_data_); | |||
| begin_src_data_ = nullptr; | |||
| } | |||
| } | |||
| int ReduceInt8CPUKernel::ReSize() { | |||
| FreeTmpBuffer(); | |||
| auto ret = MallocTmpBuffer(); | |||
| if (ret != RET_OK) { | |||
| FreeTmpBuffer(); | |||
| } | |||
| return ret; | |||
| } | |||
| int ReduceInt8CPUKernel::ReSize() { return ReduceBaseCPUKernel::ReSize(); } | |||
| int ReduceInt8Impl(void *cdata, int task_id) { | |||
| auto reduce = reinterpret_cast<ReduceInt8CPUKernel *>(cdata); | |||
| @@ -246,80 +222,65 @@ int ReduceInt8Impl(void *cdata, int task_id) { | |||
| return RET_OK; | |||
| } | |||
| void ReduceInt8CPUKernel::GetQuantArgs(size_t i) { | |||
| MS_ASSERT(i < static_cast<size_t>(num_axis_)); | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceMean)) { | |||
| quant_arg_.mean_multiplier_ = mean_multipliers_[i]->multiplier_; | |||
| quant_arg_.mean_left_shift_ = mean_multipliers_[i]->left_shift_; | |||
| quant_arg_.mean_right_shift_ = mean_multipliers_[i]->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceProd)) { | |||
| quant_arg_.prod_multiplier_ = prod_multipliers_[i]->multiplier_; | |||
| quant_arg_.prod_left_shift_ = prod_multipliers_[i]->left_shift_; | |||
| quant_arg_.prod_right_shift_ = prod_multipliers_[i]->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceSumSquare)) { | |||
| quant_arg_.sum_square_multiplier_ = sum_square_multipliers_[i]->multiplier_; | |||
| quant_arg_.sum_square_left_shift_ = sum_square_multipliers_[i]->left_shift_; | |||
| quant_arg_.sum_square_right_shift_ = sum_square_multipliers_[i]->right_shift_; | |||
| } | |||
| } | |||
| int ReduceInt8CPUKernel::Run() { | |||
| auto prepare_ret = Prepare(); | |||
| if (prepare_ret != RET_OK) { | |||
| MS_LOG(ERROR) << "Prepare fail!ret: " << prepare_ret; | |||
| return prepare_ret; | |||
| } | |||
| auto ret = MallocTmpBuffer(); | |||
| if (ret != RET_OK) { | |||
| FreeTmpBuffer(); | |||
| return ret; | |||
| } | |||
| is_last_axis_ = false; | |||
| tmp_shape_ = in_tensors_.at(0)->shape(); | |||
| src_data_ = begin_src_data_; | |||
| for (size_t i = 0; i < data_buffers_.size(); ++i) { | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceMean)) { | |||
| quant_arg_.mean_multiplier_ = mean_multipliers_[i]->multiplier_; | |||
| quant_arg_.mean_left_shift_ = mean_multipliers_[i]->left_shift_; | |||
| quant_arg_.mean_right_shift_ = mean_multipliers_[i]->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceProd)) { | |||
| quant_arg_.prod_multiplier_ = prod_multipliers_[i]->multiplier_; | |||
| quant_arg_.prod_left_shift_ = prod_multipliers_[i]->left_shift_; | |||
| quant_arg_.prod_right_shift_ = prod_multipliers_[i]->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceSumSquare)) { | |||
| quant_arg_.sum_square_multiplier_ = sum_square_multipliers_[i]->multiplier_; | |||
| quant_arg_.sum_square_left_shift_ = sum_square_multipliers_[i]->left_shift_; | |||
| quant_arg_.sum_square_right_shift_ = sum_square_multipliers_[i]->right_shift_; | |||
| } | |||
| auto input = in_tensors().at(0); | |||
| auto input_data = reinterpret_cast<int8_t *>(input->MutableData()); | |||
| for (auto i = 0; i < input->ElementsNum(); i++) { | |||
| begin_src_data_[i] = static_cast<int32_t>(input_data[i]); | |||
| } | |||
| src_data_ = begin_src_data_; | |||
| for (size_t i = 0; i < data_buffers_.size() - 1; ++i) { | |||
| GetQuantArgs(i); | |||
| dst_data_ = data_buffers_[i]; | |||
| int axis = axes_[i]; | |||
| outer_size_ = 1; | |||
| for (int j = 0; j < axis; j++) { | |||
| outer_size_ *= tmp_shape_[j]; | |||
| } | |||
| inner_size_ = 1; | |||
| for (int k = axis + 1; k < static_cast<int>(tmp_shape_.size()); k++) { | |||
| inner_size_ *= tmp_shape_[k]; | |||
| } | |||
| axis_size_ = tmp_shape_[axis]; | |||
| outer_size_ = outer_sizes_[i]; | |||
| inner_size_ = inner_sizes_[i]; | |||
| axis_size_ = axis_sizes_[i]; | |||
| auto error_code = ParallelLaunch(THREAD_POOL_DEFAULT, ReduceInt8Impl, this, context_->thread_num_); | |||
| if (error_code != RET_OK) { | |||
| FreeTmpBuffer(); | |||
| MS_LOG(ERROR) << "Reduce run error, error_code[" << error_code << "]"; | |||
| return RET_ERROR; | |||
| } | |||
| tmp_shape_[axis] = 1; | |||
| src_data_ = dst_data_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceMean)) { | |||
| quant_arg_.mean_multiplier_ = mean_multipliers_.back()->multiplier_; | |||
| quant_arg_.mean_left_shift_ = mean_multipliers_.back()->left_shift_; | |||
| quant_arg_.mean_right_shift_ = mean_multipliers_.back()->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceProd)) { | |||
| quant_arg_.prod_multiplier_ = prod_multipliers_.back()->multiplier_; | |||
| quant_arg_.prod_left_shift_ = prod_multipliers_.back()->left_shift_; | |||
| quant_arg_.prod_right_shift_ = prod_multipliers_.back()->right_shift_; | |||
| } | |||
| if (mode_ == static_cast<int>(schema::ReduceMode_ReduceSumSquare)) { | |||
| quant_arg_.sum_square_multiplier_ = sum_square_multipliers_.back()->multiplier_; | |||
| quant_arg_.sum_square_left_shift_ = sum_square_multipliers_.back()->left_shift_; | |||
| quant_arg_.sum_square_right_shift_ = sum_square_multipliers_.back()->right_shift_; | |||
| } | |||
| int last_reduce_axis = axes_[num_axes_ - 1]; | |||
| outer_size_ = 1; | |||
| for (int i = 0; i < last_reduce_axis; i++) { | |||
| outer_size_ *= tmp_shape_[i]; | |||
| } | |||
| inner_size_ = 1; | |||
| for (int i = last_reduce_axis + 1; i < static_cast<int>(tmp_shape_.size()); i++) { | |||
| inner_size_ *= tmp_shape_[i]; | |||
| } | |||
| axis_size_ = tmp_shape_[last_reduce_axis]; | |||
| GetQuantArgs(static_cast<size_t>(num_axes_ - 1)); | |||
| outer_size_ = outer_sizes_.back(); | |||
| inner_size_ = inner_sizes_.back(); | |||
| axis_size_ = axis_sizes_.back(); | |||
| last_dst_data_ = reinterpret_cast<int8_t *>(out_tensors_.at(0)->MutableData()); | |||
| is_last_axis_ = true; | |||
| auto error_code = ParallelLaunch(THREAD_POOL_DEFAULT, ReduceInt8Impl, this, context_->thread_num_); | |||
| @@ -328,7 +289,6 @@ int ReduceInt8CPUKernel::Run() { | |||
| FreeTmpBuffer(); | |||
| return RET_ERROR; | |||
| } | |||
| FreeTmpBuffer(); | |||
| return RET_OK; | |||
| } | |||
| @@ -68,7 +68,9 @@ class ReduceInt8CPUKernel : public ReduceBaseCPUKernel { | |||
| private: | |||
| int MallocTmpBuffer(); | |||
| void FreeTmpBuffer(); | |||
| int CalculateQuantArgs(); | |||
| void GetQuantArgs(size_t i); | |||
| private: | |||
| ReduceParameter *param_ = nullptr; | |||
| @@ -46,7 +46,7 @@ TEST_F(TestReduceFp32, Mean) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -72,9 +72,9 @@ TEST_F(TestReduceFp32, Mean2Thread) { | |||
| int axis_size = 4; | |||
| thread_num = 2; | |||
| tid = 0; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| tid = 1; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -98,7 +98,7 @@ TEST_F(TestReduceFp32, MeanAllAxis) { | |||
| float *src = in; | |||
| float dst1[48] = {0}; | |||
| MS_ASSERT(dst != nullptr); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, input_shape, dst1, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, dst1, tid, thread_num); | |||
| input_shape[0] = 1; // 1 4 4 3 | |||
| outer_size = 1; | |||
| @@ -106,7 +106,7 @@ TEST_F(TestReduceFp32, MeanAllAxis) { | |||
| axis_size = 4; | |||
| src = dst1; | |||
| float dst2[12] = {0}; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, input_shape, dst2, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, dst2, tid, thread_num); | |||
| input_shape[1] = 1; // 1 1 4 3 | |||
| outer_size = 1; | |||
| @@ -114,14 +114,14 @@ TEST_F(TestReduceFp32, MeanAllAxis) { | |||
| axis_size = 4; | |||
| src = dst2; | |||
| float dst3[3] = {0}; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, input_shape, dst3, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, dst3, tid, thread_num); | |||
| input_shape[2] = 1; // 1 1 1 3 | |||
| outer_size = 1; | |||
| inner_size = 1; | |||
| axis_size = 3; | |||
| src = dst3; | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, input_shape, out, tid, thread_num); | |||
| (void)ReduceMean(outer_size, inner_size, axis_size, src, out, tid, thread_num); | |||
| int output_size = 1; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -145,7 +145,7 @@ TEST_F(TestReduceFp32, Sum) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -171,9 +171,9 @@ TEST_F(TestReduceFp32, Sum2Thread) { | |||
| int axis_size = 4; | |||
| thread_num = 2; | |||
| tid = 0; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| tid = 1; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -197,7 +197,7 @@ TEST_F(TestReduceFp32, SumAllAxis) { | |||
| float *src = in; | |||
| float dst1[48] = {0}; | |||
| MS_ASSERT(dst != nullptr); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, input_shape, dst1, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, dst1, tid, thread_num); | |||
| input_shape[0] = 1; // 1 4 4 3 | |||
| outer_size = 1; | |||
| @@ -205,7 +205,7 @@ TEST_F(TestReduceFp32, SumAllAxis) { | |||
| axis_size = 4; | |||
| src = dst1; | |||
| float dst2[12] = {0}; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, input_shape, dst2, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, dst2, tid, thread_num); | |||
| input_shape[1] = 1; // 1 1 4 3 | |||
| outer_size = 1; | |||
| @@ -213,14 +213,14 @@ TEST_F(TestReduceFp32, SumAllAxis) { | |||
| axis_size = 4; | |||
| src = dst2; | |||
| float dst3[3] = {0}; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, input_shape, dst3, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, dst3, tid, thread_num); | |||
| input_shape[2] = 1; // 1 1 1 3 | |||
| outer_size = 1; | |||
| inner_size = 1; | |||
| axis_size = 3; | |||
| src = dst3; | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, input_shape, out, tid, thread_num); | |||
| (void)ReduceSum(outer_size, inner_size, axis_size, src, out, tid, thread_num); | |||
| int output_size = 1; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -244,7 +244,7 @@ TEST_F(TestReduceFp32, Max) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceMax(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceMax(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -268,7 +268,7 @@ TEST_F(TestReduceFp32, Min) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceMin(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceMin(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -293,7 +293,7 @@ TEST_F(TestReduceFp32, Prod) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceProd(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceProd(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||
| @@ -318,7 +318,7 @@ TEST_F(TestReduceFp32, SumSquare) { | |||
| int outer_size = 2; | |||
| int inner_size = 12; | |||
| int axis_size = 4; | |||
| (void)ReduceSumSquare(outer_size, inner_size, axis_size, in, input_shape, out, tid, thread_num); | |||
| (void)ReduceSumSquare(outer_size, inner_size, axis_size, in, out, tid, thread_num); | |||
| int output_size = 24; | |||
| CompareOutputData(out, correct, output_size, err_tol); | |||