Merge pull request !3324 from fangzehua/reduce_anytags/v0.7.0-beta
| @@ -127,6 +127,7 @@ static std::map<string, string> tbe_func_adapter_map = { | |||||
| {"apply_rms_prop", "apply_rms_prop_d"}, | {"apply_rms_prop", "apply_rms_prop_d"}, | ||||
| {"cum_prod", "cumprod_d"}, | {"cum_prod", "cumprod_d"}, | ||||
| {"reduce_all", "reduce_all_d"}, | {"reduce_all", "reduce_all_d"}, | ||||
| {"reduce_any", "reduce_any_d"}, | |||||
| {"sparse_apply_adagrad", "sparse_apply_adagrad_d"}, | {"sparse_apply_adagrad", "sparse_apply_adagrad_d"}, | ||||
| {"unsorted_segment_min", "unsorted_segment_min_d"}, | {"unsorted_segment_min", "unsorted_segment_min_d"}, | ||||
| {"reduce_prod", "reduce_prod_d"}, | {"reduce_prod", "reduce_prod_d"}, | ||||
| @@ -46,6 +46,7 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() { | |||||
| Register(prim::kPrimCumSum->name(), {1}); | Register(prim::kPrimCumSum->name(), {1}); | ||||
| Register(prim::kPrimCumProd->name(), {1}); | Register(prim::kPrimCumProd->name(), {1}); | ||||
| Register(prim::kPrimReduceAll->name(), {1}); | Register(prim::kPrimReduceAll->name(), {1}); | ||||
| Register(prim::kPrimReduceAny->name(), {1}); | |||||
| Register(prim::kPrimUnsortedSegmentMin->name(), {2}); | Register(prim::kPrimUnsortedSegmentMin->name(), {2}); | ||||
| Register(kSparseGatherV2, {2}); | Register(kSparseGatherV2, {2}); | ||||
| Register(kUnsortedSegmentProdOpName, {2}); | Register(kUnsortedSegmentProdOpName, {2}); | ||||
| @@ -34,6 +34,7 @@ inline const PrimitivePtr kPrimMinimumGrad = std::make_shared<Primitive>("Minimu | |||||
| inline const PrimitivePtr kPrimReduceMean = std::make_shared<Primitive>("ReduceMean"); | inline const PrimitivePtr kPrimReduceMean = std::make_shared<Primitive>("ReduceMean"); | ||||
| inline const PrimitivePtr kPrimReduceSum = std::make_shared<Primitive>("ReduceSum"); | inline const PrimitivePtr kPrimReduceSum = std::make_shared<Primitive>("ReduceSum"); | ||||
| inline const PrimitivePtr kPrimReduceAll = std::make_shared<Primitive>("ReduceAll"); | inline const PrimitivePtr kPrimReduceAll = std::make_shared<Primitive>("ReduceAll"); | ||||
| inline const PrimitivePtr kPrimReduceAny = std::make_shared<Primitive>("ReduceAny"); | |||||
| inline const PrimitivePtr kPrimReduceMax = std::make_shared<Primitive>("ReduceMax"); | inline const PrimitivePtr kPrimReduceMax = std::make_shared<Primitive>("ReduceMax"); | ||||
| inline const PrimitivePtr kPrimReduceMin = std::make_shared<Primitive>("ReduceMin"); | inline const PrimitivePtr kPrimReduceMin = std::make_shared<Primitive>("ReduceMin"); | ||||
| inline const PrimitivePtr kPrimNeg = std::make_shared<Primitive>("Neg"); | inline const PrimitivePtr kPrimNeg = std::make_shared<Primitive>("Neg"); | ||||
| @@ -641,6 +641,16 @@ def get_bprop_reduceall(self): | |||||
| return bprop | return bprop | ||||
| @bprop_getters.register(P.ReduceAny) | |||||
| def get_bprop_reduceany(self): | |||||
| """Grad definition for `ReduceAny` operation.""" | |||||
| def bprop(x, axis, out, dout): | |||||
| return zeros_like(x), zeros_like(axis) | |||||
| return bprop | |||||
| @bprop_getters.register(P.ReduceMax) | @bprop_getters.register(P.ReduceMax) | ||||
| def get_bprop_reducemax(self): | def get_bprop_reducemax(self): | ||||
| """Grad definition for `Max` operation.""" | """Grad definition for `Max` operation.""" | ||||
| @@ -246,6 +246,7 @@ from .bitwise_and import _bitwise_and_tbe | |||||
| from .bitwise_or import _bitwise_or_tbe | from .bitwise_or import _bitwise_or_tbe | ||||
| from .bitwise_xor import _bitwise_xor_tbe | from .bitwise_xor import _bitwise_xor_tbe | ||||
| from .reduce_all import _reduce_all_tbe | from .reduce_all import _reduce_all_tbe | ||||
| from .reduce_any import _reduce_any_tbe | |||||
| from .sparse_apply_adagrad import _sparse_apply_adagrad_tbe | from .sparse_apply_adagrad import _sparse_apply_adagrad_tbe | ||||
| from .unsorted_segment_min import _unsorted_segment_min_tbe | from .unsorted_segment_min import _unsorted_segment_min_tbe | ||||
| from .asin import _asin_tbe | from .asin import _asin_tbe | ||||
| @@ -0,0 +1,38 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ReduceAny op""" | |||||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||||
| reduce_any_op_info = TBERegOp("ReduceAny") \ | |||||
| .fusion_type("OPAQUE") \ | |||||
| .async_flag(False) \ | |||||
| .binfile_name("reduce_any_d.so") \ | |||||
| .compute_cost(10) \ | |||||
| .kernel_name("reduce_any_d") \ | |||||
| .partial_flag(True) \ | |||||
| .attr("axis", "required", "listInt", "all") \ | |||||
| .attr("keep_dims", "optional", "bool", "all") \ | |||||
| .input(0, "x", False, "required", "all") \ | |||||
| .output(0, "y", False, "required", "all") \ | |||||
| .op_pattern("reduce") \ | |||||
| .dtype_format(DataType.BOOL_None, DataType.BOOL_None) \ | |||||
| .get_op_info() | |||||
| @op_info_register(reduce_any_op_info) | |||||
| def _reduce_any_tbe(): | |||||
| """ReduceAny TBE register""" | |||||
| return | |||||
| @@ -44,7 +44,7 @@ from .inner_ops import ScalarCast | |||||
| from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, | from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, AssignSub, Atan2, BatchMatMul, BitwiseAnd, BitwiseOr, | ||||
| BitwiseXor, Inv, Invert, ApproximateEqual, InplaceAdd, InplaceSub, | BitwiseXor, Inv, Invert, ApproximateEqual, InplaceAdd, InplaceSub, | ||||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, | |||||
| ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd, ReduceAny, | |||||
| Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil, | Cos, Div, DivNoNan, Equal, EqualCount, Exp, Expm1, Erf, Erfc, Floor, FloorDiv, FloorMod, Ceil, | ||||
| Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, Mod, | Acosh, Greater, GreaterEqual, Less, LessEqual, Log, Log1p, LogicalAnd, Mod, | ||||
| LogicalNot, LogicalOr, MatMul, Maximum, | LogicalNot, LogicalOr, MatMul, Maximum, | ||||
| @@ -215,6 +215,7 @@ __all__ = [ | |||||
| 'CTCLoss', | 'CTCLoss', | ||||
| 'RNNTLoss', | 'RNNTLoss', | ||||
| 'ReduceAll', | 'ReduceAll', | ||||
| 'ReduceAny', | |||||
| 'ScalarToArray', | 'ScalarToArray', | ||||
| 'ScalarToTensor', | 'ScalarToTensor', | ||||
| 'TupleToArray', | 'TupleToArray', | ||||
| @@ -405,6 +405,42 @@ class ReduceAll(_Reduce): | |||||
| return self.do_infer(input_x, axis, (mstype.bool_,)) | return self.do_infer(input_x, axis, (mstype.bool_,)) | ||||
| class ReduceAny(_Reduce): | |||||
| """ | |||||
| Reduce a dimension of a tensor by the "logical or" of all elements in the dimension. | |||||
| The dtype of the tensor to be reduced is bool. | |||||
| Args: | |||||
| keep_dims (bool): If True, keep these reduced dimensions and the length is 1. | |||||
| If False, don't keep these dimensions. | |||||
| Default : False, don't keep these reduced dimensions. | |||||
| Inputs: | |||||
| - **input_x** (Tensor[bool]) - The input tensor. | |||||
| - **axis** (Union[int, tuple(int), list(int)]) - The dimensions to reduce. Default: (), reduce all dimensions. | |||||
| Only constant value is allowed. | |||||
| Outputs: | |||||
| Tensor, the dtype is bool. | |||||
| - If axis is (), and keep_dims is false, | |||||
| the output is a 0-D tensor representing the "logical or" of of all elements in the input tensor. | |||||
| - If axis is int, set as 2, and keep_dims is false, | |||||
| and keep_dims is false, the shape of output is :math:`(x_1, x_3, ..., x_R)`. | |||||
| - If axis is tuple(int), set as (2, 3), and keep_dims is false, | |||||
| the shape of output is :math:`(x_1, x_4, ..., x_R)`. | |||||
| Examples: | |||||
| >>> input_x = Tensor(np.array([[True, False], [True, True]])) | |||||
| >>> op = P.ReduceAny(keep_dims=True) | |||||
| >>> output = op(input_x, 1) | |||||
| """ | |||||
| def __infer__(self, input_x, axis): | |||||
| return self.do_infer(input_x, axis, (mstype.bool_,)) | |||||
| class ReduceMax(_Reduce): | class ReduceMax(_Reduce): | ||||
| """ | """ | ||||
| Reduce a dimension of a tensor by the maximum value in this dimension. | Reduce a dimension of a tensor by the maximum value in this dimension. | ||||
| @@ -1186,6 +1186,11 @@ test_case_math_ops = [ | |||||
| 'desc_const': [1], | 'desc_const': [1], | ||||
| 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))], | 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))], | ||||
| 'desc_bprop': []}), | 'desc_bprop': []}), | ||||
| ('ReduceAny', { | |||||
| 'block': P.ReduceAny(), | |||||
| 'desc_const': [1], | |||||
| 'desc_inputs': [Tensor(np.array([[True, False], [True, True]]))], | |||||
| 'desc_bprop': []}), | |||||
| ('BesselI0e', { | ('BesselI0e', { | ||||
| 'block': P.BesselI0e(), | 'block': P.BesselI0e(), | ||||
| 'desc_inputs': [[2, 3]], | 'desc_inputs': [[2, 3]], | ||||