Browse Source

init add acltdt handle create and destory

add hostpush part modify

optimize previous code

provide aclhandle access method

modify CMakeList format

add device_id parameter into TransferNode
tags/v1.2.0-rc1
ms_yan 4 years ago
parent
commit
293f81128d
18 changed files with 273 additions and 120 deletions
  1. +1
    -1
      mindspore/ccsrc/minddata/dataset/CMakeLists.txt
  2. +4
    -4
      mindspore/ccsrc/minddata/dataset/api/datasets.cc
  3. +4
    -3
      mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/include/datasets_bindings.cc
  4. +5
    -5
      mindspore/ccsrc/minddata/dataset/engine/datasetops/device_queue_op.cc
  5. +7
    -7
      mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.cc
  6. +2
    -2
      mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.h
  7. +5
    -4
      mindspore/ccsrc/minddata/dataset/engine/tdt/CMakeLists.txt
  8. +39
    -0
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.cc
  9. +38
    -0
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.h
  10. +115
    -57
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.cc
  11. +16
    -9
      mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.h
  12. +4
    -2
      mindspore/ccsrc/minddata/dataset/include/datasets.h
  13. +5
    -5
      mindspore/ccsrc/minddata/dataset/util/task.cc
  14. +4
    -2
      mindspore/ccsrc/runtime/device/CMakeLists.txt
  15. +5
    -6
      mindspore/ccsrc/runtime/device/ascend/ascend_kernel_runtime.cc
  16. +1
    -1
      mindspore/ccsrc/utils/context/context_extends.cc
  17. +3
    -2
      mindspore/dataset/engine/datasets.py
  18. +15
    -10
      tests/st/ops/ascend/test_tensor_print/tensor_print_utils.py

+ 1
- 1
mindspore/ccsrc/minddata/dataset/CMakeLists.txt View File

@@ -264,7 +264,7 @@ if(ENABLE_GPUQUE)
endif() endif()


if(ENABLE_TDTQUE) if(ENABLE_TDTQUE)
target_link_libraries(_c_dataengine PRIVATE ${TSDCLIENT})
target_link_libraries(_c_dataengine PRIVATE ${ACL})
endif() endif()


add_dependencies(_c_dataengine _c_mindrecord) add_dependencies(_c_dataengine _c_mindrecord)


+ 4
- 4
mindspore/ccsrc/minddata/dataset/api/datasets.cc View File

@@ -131,8 +131,8 @@ std::shared_ptr<Iterator> Dataset::CreateIterator(std::vector<std::string> colum


#ifndef ENABLE_ANDROID #ifndef ENABLE_ANDROID
// Function to return a transferred Node that transfers data through a device. // Function to return a transferred Node that transfers data through a device.
bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t num_epochs, bool send_epoch_end,
int32_t total_batches, bool create_data_info_queue) {
bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32_t device_id, int32_t num_epochs,
bool send_epoch_end, int32_t total_batches, bool create_data_info_queue) {
Status rc; Status rc;


// Build and launch tree // Build and launch tree
@@ -144,8 +144,8 @@ bool Dataset::DeviceQueue(std::string queue_name, std::string device_type, int32
} }


// Add TransferNode IR on top of dataset // Add TransferNode IR on top of dataset
auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, send_epoch_end,
total_batches, create_data_info_queue);
auto ds = std::make_shared<TransferNode>(shared_from_this()->IRNode(), queue_name, device_type, device_id,
send_epoch_end, total_batches, create_data_info_queue);


// Get ToDevice consumer // Get ToDevice consumer
auto consumer = std::make_unique<ToDevice>(num_epochs); auto consumer = std::make_unique<ToDevice>(num_epochs);


+ 4
- 3
mindspore/ccsrc/minddata/dataset/api/python/bindings/dataset/include/datasets_bindings.cc View File

@@ -527,9 +527,10 @@ PYBIND_REGISTER(TransferNode, 2, ([](const py::module *m) {
(void)py::class_<TransferNode, DatasetNode, std::shared_ptr<TransferNode>>(*m, "TransferNode", (void)py::class_<TransferNode, DatasetNode, std::shared_ptr<TransferNode>>(*m, "TransferNode",
"to create a TransferNode") "to create a TransferNode")
.def(py::init([](std::shared_ptr<DatasetNode> self, std::string queue_name, std::string device_type, .def(py::init([](std::shared_ptr<DatasetNode> self, std::string queue_name, std::string device_type,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue) {
auto transfer = std::make_shared<TransferNode>(self, queue_name, device_type, send_epoch_end,
total_batch, create_data_info_queue);
int32_t device_id, bool send_epoch_end, int32_t total_batch,
bool create_data_info_queue) {
auto transfer = std::make_shared<TransferNode>(
self, queue_name, device_type, device_id, send_epoch_end, total_batch, create_data_info_queue);
THROW_IF_ERROR(transfer->ValidateParams()); THROW_IF_ERROR(transfer->ValidateParams());
return transfer; return transfer;
})); }));


+ 5
- 5
mindspore/ccsrc/minddata/dataset/engine/datasetops/device_queue_op.cc View File

@@ -62,6 +62,7 @@ DeviceQueueOp::DeviceQueueOp(std::string channel_name, DeviceType device_type, i
#endif #endif
#ifdef ENABLE_TDTQUE #ifdef ENABLE_TDTQUE
ascend_keep_waiting_ = true; ascend_keep_waiting_ = true;
tdtInstancePtr = std::make_shared<TdtPlugin>(channel_name_, device_id_);
#endif #endif
} }


@@ -159,7 +160,7 @@ Status DeviceQueueOp::SendDataToAscend() {
RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &currRow)); RETURN_IF_NOT_OK(current_buffer->GetRow(row_id, &currRow));
WaitContinueSignal(); WaitContinueSignal();
auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost); auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost);
if (status == TdtStatus::FAILED) {
if (status != Status::OK()) {
if (stop_send_) { if (stop_send_) {
MS_LOG(INFO) << "stop_send received"; MS_LOG(INFO) << "stop_send received";
return Status::OK(); return Status::OK();
@@ -190,9 +191,9 @@ Status DeviceQueueOp::SendDataToAscend() {
} }
if (current_buffer->eoe() && send_epoch_end_) { if (current_buffer->eoe() && send_epoch_end_) {
TensorRow currRow; TensorRow currRow;
auto status =
tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost, tdt::TDT_END_OF_SEQUENCE);
if (status == TdtStatus::FAILED) {
auto status = tdtInstancePtr->hostPush(currRow, true, channel_name_, isProfilingEnable, tdt_cost,
ACL_TENSOR_DATA_END_OF_SEQUENCE);
if (status != Status::OK()) {
if (stop_send_) { if (stop_send_) {
MS_LOG(INFO) << "stop_send received"; MS_LOG(INFO) << "stop_send received";
return Status::OK(); return Status::OK();
@@ -209,7 +210,6 @@ Status DeviceQueueOp::SendDataToAscend() {
} }
RETURN_IF_NOT_OK(GetNextInput(&current_buffer)); RETURN_IF_NOT_OK(GetNextInput(&current_buffer));
} }

tree_->SetFinished(); tree_->SetFinished();


return Status::OK(); return Status::OK();


+ 7
- 7
mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.cc View File

@@ -32,20 +32,20 @@ namespace dataset {


// Constructor for TransferNode // Constructor for TransferNode
TransferNode::TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, TransferNode::TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue)
int32_t device_id, bool send_epoch_end, int32_t total_batch, bool create_data_info_queue)
: prefetch_size_(16), : prefetch_size_(16),
queue_name_(std::move(queue_name)), queue_name_(std::move(queue_name)),
device_type_(std::move(device_type)), device_type_(std::move(device_type)),
send_epoch_end_(send_epoch_end), send_epoch_end_(send_epoch_end),
total_batch_(total_batch), total_batch_(total_batch),
create_data_info_queue_(create_data_info_queue), create_data_info_queue_(create_data_info_queue),
device_id_(0) {
device_id_(device_id) {
this->AddChild(child); this->AddChild(child);
} }


std::shared_ptr<DatasetNode> TransferNode::Copy() { std::shared_ptr<DatasetNode> TransferNode::Copy() {
auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, send_epoch_end_, total_batch_,
create_data_info_queue_);
auto node = std::make_shared<TransferNode>(nullptr, queue_name_, device_type_, device_id_, send_epoch_end_,
total_batch_, create_data_info_queue_);
return node; return node;
} }


@@ -96,9 +96,9 @@ Status TransferNode::Build(std::vector<std::shared_ptr<DatasetOp>> *const node_o
RETURN_STATUS_UNEXPECTED(err_msg); RETURN_STATUS_UNEXPECTED(err_msg);
} }


// Get device ID (shard ID) from children
device_id_ = 0;
RETURN_IF_NOT_OK(this->GetShardId(&device_id_));
// // Get device ID (shard ID) from children
// device_id_ = 0;
// RETURN_IF_NOT_OK(this->GetShardId(&device_id_));


auto op = std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_, auto op = std::make_shared<DeviceQueueOp>(queue_name_, type, device_id_, prefetch_size_, send_epoch_end_,
total_batch_, create_data_info_queue_); total_batch_, create_data_info_queue_);


+ 2
- 2
mindspore/ccsrc/minddata/dataset/engine/ir/datasetops/transfer_node.h View File

@@ -29,8 +29,8 @@ namespace dataset {
class TransferNode : public DatasetNode { class TransferNode : public DatasetNode {
public: public:
/// \brief Constructor /// \brief Constructor
TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, bool send_epoch_end,
int32_t total_batch, bool create_data_info_queue);
TransferNode(std::shared_ptr<DatasetNode> child, std::string queue_name, std::string device_type, int32_t device_id,
bool send_epoch_end, int32_t total_batch, bool create_data_info_queue);


/// \brief Destructor /// \brief Destructor
~TransferNode() = default; ~TransferNode() = default;


+ 5
- 4
mindspore/ccsrc/minddata/dataset/engine/tdt/CMakeLists.txt View File

@@ -1,5 +1,6 @@
file(GLOB_RECURSE _CURRENT_SRC_FILES RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "*.cc")
file(
GLOB_RECURSE _CURRENT_SRC_FILES
RELATIVE ${CMAKE_CURRENT_SOURCE_DIR}
"*.cc")
set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD) set_property(SOURCE ${_CURRENT_SRC_FILES} PROPERTY COMPILE_DEFINITIONS SUBMODULE_ID=mindspore::SubModuleId::SM_MD)
add_library(engine-tdt OBJECT
tdt_plugin.cc
)
add_library(engine-tdt OBJECT tdt_plugin.cc tdt_handle.cc)

+ 39
- 0
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.cc View File

@@ -0,0 +1,39 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "minddata/dataset/engine/tdt/tdt_handle.h"
namespace mindspore {
namespace dataset {

std::vector<acltdtChannelHandle *> TdtHandle::acl_handle = std::vector<acltdtChannelHandle *>();

void TdtHandle::AddHandle(acltdtChannelHandle *handle) {
if (handle != nullptr) {
acl_handle.emplace_back(handle);
}
}

bool TdtHandle::DestroyHandle() {
for (auto handle : acl_handle) {
if (handle != nullptr) {
if (acltdtDestroyChannel(handle) != ACL_SUCCESS) {
return false;
}
}
}
return true;
}
} // namespace dataset
} // namespace mindspore

+ 38
- 0
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_handle.h View File

@@ -0,0 +1,38 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_
#define MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_

#include <iostream>
#include <vector>
#include "acl/acl_tdt.h"

namespace mindspore {
namespace dataset {
class TdtHandle {
public:
static void AddHandle(acltdtChannelHandle *handle);

static bool DestroyHandle();

private:
TdtHandle() {}

static std::vector<acltdtChannelHandle *> acl_handle;
};
} // namespace dataset
} // namespace mindspore
#endif // MINDSPORE_CCSRC_MINDDATA_DATASET_ENGINE_TDT_TDT_HANDLE_H_

+ 115
- 57
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.cc View File

@@ -23,108 +23,138 @@


namespace mindspore { namespace mindspore {
namespace dataset { namespace dataset {
static std::shared_ptr<TdtPlugin> instance_ptr_ = nullptr;
TdtPlugin::TdtPlugin(const std::string &channel_name, int32_t device_id) {
// create acl tdt handle
acl_handle_ = acltdtCreateChannel(device_id, channel_name.c_str());
if (acl_handle_ == nullptr) {
MS_LOG(ERROR) << "Failed to create channel for tdt queue.";
}
TdtHandle::AddHandle(acl_handle_);
}


std::shared_ptr<TdtPlugin> TdtPlugin::GetInstance() {
if (instance_ptr_ == nullptr) {
instance_ptr_ = std::shared_ptr<TdtPlugin>(new TdtPlugin);
TdtPlugin::~TdtPlugin() {
if (acl_handle_ != nullptr && acltdtDestroyChannel(acl_handle_) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Failed to destroy channel for tdt queue.";
} }
return instance_ptr_;
} }


TdtStatus TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time,
tdt::TdtDataType tdt_type) {
Status TdtPlugin::hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profiling, int32_t &time,
acltdtTensorType tdt_type) {
MS_LOG(DEBUG) << "TDT channel name is " << channel_name << "."; MS_LOG(DEBUG) << "TDT channel name is " << channel_name << ".";
std::vector<DataItem> items;

acltdtDataset *acl_dataset = nullptr;
double start_time; double start_time;
if (tdt_type == tdt::TDT_TENSOR) {
auto ret = translate(ts_row, items);
if (ret != SUCCESS) {
MS_LOG(ERROR) << "TDT converting tensor failed!";
return FAILED;
}
} else if (tdt_type == tdt::TDT_END_OF_SEQUENCE) {
DataItem data_item;
data_item.dataType_ = tdt::TDT_END_OF_SEQUENCE;
items.emplace_back(data_item);
MS_LOG(INFO) << "TDT data type is TDT_END_OF_SEQUENCE";
auto ret = translate(tdt_type, ts_row, &acl_dataset);
if (ret != Status::OK()) {
DestroyAclDataset(acl_dataset);
RETURN_STATUS_UNEXPECTED("TDT converting tensor failed!");
} }

if (profiling) { if (profiling) {
start_time = ProfilingTime::GetCurMilliSecond(); start_time = ProfilingTime::GetCurMilliSecond();
} }
#if ENABLE_D #if ENABLE_D
// Data prefetch only when PS mode enables cache. // Data prefetch only when PS mode enables cache.
if (items.size() > 0) {
if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, items[0].dataPtr_.get(), items[0].dataLen_)) {
return FAILED;
if (acltdtGetDatasetSize(acl_dataset) > 0) {
acltdtDataItem *item0 = acltdtGetDataItem(acl_dataset, 0);
if (!ps::PsDataPrefetch::GetInstance().PrefetchData(channel_name, acltdtGetDataAddrFromItem(item0),
acltdtGetDataSizeFromItem(item0))) {
RETURN_STATUS_UNEXPECTED("PrefetchData failed in when pre-processing sending data.");
} }
} }
#endif #endif
if (tdt::TdtHostPushData(channel_name, items) != 0) {
return FAILED;
auto status = acltdtSendTensor(acl_handle_, acl_dataset, -1);
DestroyAclDataset(acl_dataset);
if (status != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Tdt Send data failed.");
} }
if (profiling) { if (profiling) {
double end_time = ProfilingTime::GetCurMilliSecond(); double end_time = ProfilingTime::GetCurMilliSecond();
time = (int32_t)(end_time - start_time); time = (int32_t)(end_time - start_time);
} }
return SUCCESS;
return Status::OK();
} }


TdtStatus TdtPlugin::getTdtType(DataType d_type, std::string &datatype) {
Status TdtPlugin::getTdtType(DataType d_type, aclDataType &datatype) {
switch (d_type.value()) { switch (d_type.value()) {
case DataType::DE_BOOL: case DataType::DE_BOOL:
datatype = "bool";
datatype = ACL_BOOL;
break; break;
case DataType::DE_INT8: case DataType::DE_INT8:
datatype = "int8";
datatype = ACL_INT8;
break; break;
case DataType::DE_UINT8: case DataType::DE_UINT8:
datatype = "uint8";
datatype = ACL_UINT8;
break; break;
case DataType::DE_INT16: case DataType::DE_INT16:
datatype = "int16";
datatype = ACL_INT16;
break; break;
case DataType::DE_UINT16: case DataType::DE_UINT16:
datatype = "uint16";
datatype = ACL_UINT16;
break; break;
case DataType::DE_INT32: case DataType::DE_INT32:
datatype = "int32";
datatype = ACL_INT32;
break; break;
case DataType::DE_UINT32: case DataType::DE_UINT32:
datatype = "uint32";
datatype = ACL_UINT32;
break; break;
case DataType::DE_FLOAT16: case DataType::DE_FLOAT16:
datatype = "float16";
datatype = ACL_FLOAT16;
break; break;
case DataType::DE_FLOAT32: case DataType::DE_FLOAT32:
datatype = "float32";
datatype = ACL_FLOAT;
break; break;
case DataType::DE_FLOAT64: case DataType::DE_FLOAT64:
datatype = "float64";
datatype = ACL_DOUBLE;
break; break;
case DataType::DE_INT64: case DataType::DE_INT64:
datatype = "int64";
datatype = ACL_INT64;
break; break;
case DataType::DE_UINT64: case DataType::DE_UINT64:
datatype = "uint64";
datatype = ACL_UINT64;
break; break;
default: default:
return FAILED;
RETURN_STATUS_UNEXPECTED("Invalid data, got unexpected data type.");
} }
return SUCCESS;
return Status::OK();
} }


TdtStatus TdtPlugin::translate(const TensorRow &ts_row, std::vector<DataItem> &items) {
if (ts_row.size() == 0) {
MS_LOG(ERROR) << "TDT the size of row is zero.";
return SUCCESS;
Status TdtPlugin::translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset) {
auto acl_dataset = acltdtCreateDataset();
if (acl_dataset == nullptr) {
RETURN_STATUS_UNEXPECTED("Create tdt dataset failed.");
} }
for (auto ts : ts_row) {
std::string datatype;
TdtStatus status = getTdtType(ts->type(), datatype);
if (status != SUCCESS) {
return status;
auto status = AssembleTensor2AclDataset(tdt_type, ts_row, acl_dataset);
if (status != Status::OK()) {
DestroyAclDataset(acl_dataset);
RETURN_STATUS_UNEXPECTED("Assemble tensor row to tdt dataset failed.");
}

*output_acl_dataset = acl_dataset;
return Status::OK();
}

Status TdtPlugin::AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row,
acltdtDataset *acl_dataset) {
if (tdt_type != ACL_TENSOR_DATA_TENSOR || ts_row.size() == 0) {
acltdtDataItem *acl_data = acltdtCreateDataItem(tdt_type, nullptr, 0, ACL_BOOL, nullptr, 0);
if (acl_data == nullptr) {
RETURN_STATUS_UNEXPECTED("Create data item failed when send data with type:" + std::to_string(tdt_type));
} }
if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) {
if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Destroy data item failed when send data with type: " << tdt_type;
}
RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data.");
}
return Status::OK();
}

for (auto ts : ts_row) {
aclDataType datatype;
acltdtDataItem *acl_data = nullptr;
RETURN_IF_NOT_OK(getTdtType(ts->type(), datatype));

TensorShape tsShape = ts->shape(); TensorShape tsShape = ts->shape();
std::string dataShapes = "["; std::string dataShapes = "[";
for (auto dim : tsShape.AsVector()) { for (auto dim : tsShape.AsVector()) {
@@ -132,18 +162,46 @@ TdtStatus TdtPlugin::translate(const TensorRow &ts_row, std::vector<DataItem> &i
} }
dataShapes.pop_back(); dataShapes.pop_back();
(void)dataShapes.append("]"); (void)dataShapes.append("]");
DataItem data_item;
data_item.dataType_ = tdt::TDT_TENSOR;
data_item.tensorShape_ = dataShapes;
data_item.tensorType_ = datatype;
data_item.dataLen_ = ts->SizeInBytes();
data_item.dataPtr_ =

std::shared_ptr<void> dataPtr =
std::shared_ptr<void>(reinterpret_cast<uchar *>(&(*ts->begin<uint8_t>())), [](const void *elem) {}); std::shared_ptr<void>(reinterpret_cast<uchar *>(&(*ts->begin<uint8_t>())), [](const void *elem) {});
items.emplace_back(data_item);
size_t dataLen = ts->SizeInBytes();
const dsize_t dims = tsShape.Rank();
std::vector<int64_t> dataShape;
for (auto i = 0; i < dims; i++) {
dataShape.emplace_back(tsShape[i]);
}
acl_data = acltdtCreateDataItem(ACL_TENSOR_DATA_TENSOR, (tsShape.empty() ? nullptr : &dataShape[0]), dims, datatype,
dataPtr.get(), dataLen);
if (acl_data == nullptr) {
RETURN_STATUS_UNEXPECTED("Create data item failed when send data.");
}
if (acltdtAddDataItem(acl_dataset, acl_data) != ACL_SUCCESS) {
if (acltdtDestroyDataItem(acl_data) != ACL_SUCCESS) {
MS_LOG(ERROR) << "Destroy data item failed when send data with type ACL_TENSOR_DATA_TENSOR.";
}
RETURN_STATUS_UNEXPECTED("Add data item to tdt dataset failed when send data.");
}

MS_LOG(DEBUG) << "TDT data type is TDT_TENSOR, tensor type is " << datatype << ", tensor shape is " << dataShapes MS_LOG(DEBUG) << "TDT data type is TDT_TENSOR, tensor type is " << datatype << ", tensor shape is " << dataShapes
<< ", data length is " << ts->Size() << "."; << ", data length is " << ts->Size() << ".";
} }
return SUCCESS;

return Status::OK();
}

Status TdtPlugin::DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item) {
if (include_data_item) {
for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) {
if (acltdtDestroyDataItem(acltdtGetDataItem(acl_dataset, i)) != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Destroy data item failed when send data.");
}
}
}
if (acltdtDestroyDataset(acl_dataset) != ACL_SUCCESS) {
RETURN_STATUS_UNEXPECTED("Destroy tdt dataset failed when send data.");
}
return Status::OK();
} }
} // namespace dataset } // namespace dataset
} // namespace mindspore } // namespace mindspore

+ 16
- 9
mindspore/ccsrc/minddata/dataset/engine/tdt/tdt_plugin.h View File

@@ -22,33 +22,40 @@
#include <memory> #include <memory>
#include <string> #include <string>
#include <vector> #include <vector>
#include "tdt/tdt_host_interface.h"
#include "acl/acl_tdt.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"


#include "minddata/dataset/core/data_type.h" #include "minddata/dataset/core/data_type.h"
#include "minddata/dataset/core/tensor.h" #include "minddata/dataset/core/tensor.h"
#include "minddata/dataset/core/tensor_row.h" #include "minddata/dataset/core/tensor_row.h"
#include "minddata/dataset/util/status.h"


namespace mindspore { namespace mindspore {
namespace dataset { namespace dataset {
enum TdtStatus { SUCCESS, FAILED };

using tdt::DataItem;


class TdtPlugin { class TdtPlugin {
public: public:
static std::shared_ptr<TdtPlugin> GetInstance(); static std::shared_ptr<TdtPlugin> GetInstance();


TdtStatus hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time,
tdt::TdtDataType tdt_type = tdt::TDT_TENSOR);
Status hostPush(TensorRow ts_row, bool is_wait, std::string channel_name, bool profilig, int32_t &time,
acltdtTensorType tdt_type = ACL_TENSOR_DATA_TENSOR);

TdtPlugin(const std::string &channel_name, int32_t device_id);

~TdtPlugin();


private: private:
TdtPlugin() {}
Status DestroyAclDataset(acltdtDataset *acl_dataset, bool include_data_item = true);


TdtStatus getTdtType(DataType d_type, std::string &datatype);
Status AssembleTensor2AclDataset(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset *acl_dataset);


TdtStatus translate(const TensorRow &ts_row, std::vector<DataItem> &items);
Status getTdtType(DataType d_type, aclDataType &datatype);

Status translate(acltdtTensorType tdt_type, const TensorRow &ts_row, acltdtDataset **output_acl_dataset);


void *tdt_handle_ = nullptr; void *tdt_handle_ = nullptr;

acltdtChannelHandle *acl_handle_;
}; };
} // namespace dataset } // namespace dataset
} // namespace mindspore } // namespace mindspore


+ 4
- 2
mindspore/ccsrc/minddata/dataset/include/datasets.h View File

@@ -152,14 +152,16 @@ class Dataset : public std::enable_shared_from_this<Dataset> {
/// of data transmission per time is 256M. /// of data transmission per time is 256M.
/// \param[in] queue_name Channel name (default="", create new unique name). /// \param[in] queue_name Channel name (default="", create new unique name).
/// \param[in] device_type Type of device (default="", get from MSContext). /// \param[in] device_type Type of device (default="", get from MSContext).
/// \param[in] device_id id of device (default=0, get from MSContext).
/// \param[in] num_epochs Number of epochs (default=-1, infinite epochs). /// \param[in] num_epochs Number of epochs (default=-1, infinite epochs).
/// \param[in] send_epoch_end Whether to send end of sequence to device or not (default=true). /// \param[in] send_epoch_end Whether to send end of sequence to device or not (default=true).
/// \param[in] total_batches Number of batches to be sent to the device (default=0, all data). /// \param[in] total_batches Number of batches to be sent to the device (default=0, all data).
/// \param[in] create_data_info_queue Whether to create queue which stores types and shapes /// \param[in] create_data_info_queue Whether to create queue which stores types and shapes
/// of data or not(default=false). /// of data or not(default=false).
/// \return Returns true if no error encountered else false. /// \return Returns true if no error encountered else false.
bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t num_epochs = -1,
bool send_epoch_end = true, int32_t total_batches = 0, bool create_data_info_queue = false);
bool DeviceQueue(std::string queue_name = "", std::string device_type = "", int32_t device_id = 0,
int32_t num_epochs = -1, bool send_epoch_end = true, int32_t total_batches = 0,
bool create_data_info_queue = false);


/// \brief Function to create a Saver to save the dynamic data processed by the dataset pipeline /// \brief Function to create a Saver to save the dynamic data processed by the dataset pipeline
/// \note Usage restrictions: /// \note Usage restrictions:


+ 5
- 5
mindspore/ccsrc/minddata/dataset/util/task.cc View File

@@ -21,8 +21,9 @@
#include "minddata/dataset/util/services.h" #include "minddata/dataset/util/services.h"
#endif #endif
#ifdef ENABLE_TDTQUE #ifdef ENABLE_TDTQUE
#include "tdt/tdt_host_interface.h"
#include "acl/acl_tdt.h"
#include "tdt/status.h" #include "tdt/status.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"
#endif #endif


namespace mindspore { namespace mindspore {
@@ -161,11 +162,10 @@ Status Task::Join(WaitFlag blocking) {
if (wait_times > 5 && my_name_.find("DeviceQueueOp") != std::string::npos) { if (wait_times > 5 && my_name_.find("DeviceQueueOp") != std::string::npos) {
MS_LOG(WARNING) << "Wait " << wait_times << " seconds, " MS_LOG(WARNING) << "Wait " << wait_times << " seconds, "
<< "the task: " << my_name_ << " will be destroyed by TdtHostDestory."; << "the task: " << my_name_ << " will be destroyed by TdtHostDestory.";
int32_t destory_status = tdt::TdtHostDestroy();
if (destory_status != TDT_OK_CODE) {
MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << ".";
if (!TdtHandle::DestroyHandle()) {
MS_LOG(WARNING) << "Destroy tdt channel failed.";
} else { } else {
MS_LOG(INFO) << "Destroy tsd success.";
MS_LOG(INFO) << "Destroy tdt channel success.";
} }


// just wait 30 seconds // just wait 30 seconds


+ 4
- 2
mindspore/ccsrc/runtime/device/CMakeLists.txt View File

@@ -1,5 +1,6 @@
file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc" file(GLOB_RECURSE DEVICE_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "common/*.cc"
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc" "memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
"kernel_info.cc" "executor/dynamic_kernel.cc" "executor/executor_callback.cc" "kernel_runtime.cc"
"memory_manager.cc" "kernel_runtime_manager.cc" "convert_tensor_utils.cc"
) )


if(ENABLE_GPU) if(ENABLE_GPU)
@@ -9,7 +10,8 @@ else()
endif() endif()


if(ENABLE_D) if(ENABLE_D)
file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc")
file(GLOB_RECURSE D_SRC_LIST RELATIVE ${CMAKE_CURRENT_SOURCE_DIR} "ascend/*.cc" "kernel_adjust.cc"
"../../minddata/dataset/engine/tdt/tdt_handle.cc")
endif() endif()


if(ENABLE_CPU) if(ENABLE_CPU)


+ 5
- 6
mindspore/ccsrc/runtime/device/ascend/ascend_kernel_runtime.cc View File

@@ -60,8 +60,8 @@
#include "runtime/device/ascend/profiling/profiling_callback_register.h" #include "runtime/device/ascend/profiling/profiling_callback_register.h"
#include "backend/kernel_compiler/hccl/hccl_context.h" #include "backend/kernel_compiler/hccl/hccl_context.h"
#ifdef ENABLE_TDTQUE #ifdef ENABLE_TDTQUE
#include "tdt/tdt_host_interface.h"
#include "tdt/status.h"
#include "minddata/dataset/engine/tdt/tdt_handle.h"
using mindspore::dataset::TdtHandle;
#endif #endif


using ge::model_runner::ModelRunner; using ge::model_runner::ModelRunner;
@@ -695,11 +695,10 @@ bool AscendKernelRuntime::RunTask(const session::KernelGraph *graph) {
#ifdef ENABLE_TDTQUE #ifdef ENABLE_TDTQUE
// Run task error, we should call TdtHostDestroy to release tdt to avoid DeviceQueueOp hostPush hung // Run task error, we should call TdtHostDestroy to release tdt to avoid DeviceQueueOp hostPush hung
// case1: cpu usage 100% cause thread/process exit, but some tdt thread remain in backend // case1: cpu usage 100% cause thread/process exit, but some tdt thread remain in backend
int32_t destory_status = tdt::TdtHostDestroy();
if (destory_status != TDT_OK_CODE) {
MS_LOG(WARNING) << "Destroy tsd failed, status = " << destory_status << ".";
if (!TdtHandle::DestroyHandle()) {
MS_LOG(WARNING) << "Destroy tdt channel failed.";
} else { } else {
MS_LOG(INFO) << "Destroy tsd success.";
MS_LOG(INFO) << "Destroy tdt channel success.";
} }
#endif #endif
return false; return false;


+ 1
- 1
mindspore/ccsrc/utils/context/context_extends.cc View File

@@ -230,7 +230,7 @@ void GetGeOptions(const std::shared_ptr<MsContext> &ms_context_ptr, std::map<std
} else { } else {
(*ge_options)["ge.exec.precision_mode"] = "allow_fp32_to_fp16"; (*ge_options)["ge.exec.precision_mode"] = "allow_fp32_to_fp16";
} }
// Disable the global variable acc, only enable it whlie adding training graph in pipeline
// Disable the global variable acc, only enable it while adding training graph in pipeline
(*ge_options)["ge.exec.variable_acc"] = "0"; (*ge_options)["ge.exec.variable_acc"] = "0";
#endif #endif
} }


+ 3
- 2
mindspore/dataset/engine/datasets.py View File

@@ -2876,10 +2876,11 @@ class TransferDataset(Dataset):


def parse(self, children=None): def parse(self, children=None):
total_batch = 0 total_batch = 0
device_id = context.get_context("device_id")
if hasattr(self.children[0], "__total_batch__"): if hasattr(self.children[0], "__total_batch__"):
total_batch = self.children[0].__total_batch__ total_batch = self.children[0].__total_batch__
return cde.TransferNode(children[0], self.queue_name, self.device_type, self._send_epoch_end, total_batch,
self._create_data_info_queue)
return cde.TransferNode(children[0], self.queue_name, self.device_type, device_id, self._send_epoch_end,
total_batch, self._create_data_info_queue)


def get_args(self): def get_args(self):
args = super().get_args() args = super().get_args()


+ 15
- 10
tests/st/ops/ascend/test_tensor_print/tensor_print_utils.py View File

@@ -54,15 +54,20 @@ def get_tensor(is_scalar, input_type):


if __name__ == "__main__": if __name__ == "__main__":
net = TensorPrint() net = TensorPrint()
net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8),
get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16),
get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32),
get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64),
get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16),
# net(get_tensor('scalar', mindspore.bool_), get_tensor('scalar', mindspore.uint8),
# get_tensor('scalar', mindspore.int8), get_tensor('scalar', mindspore.uint16),
# get_tensor('scalar', mindspore.int16), get_tensor('scalar', mindspore.uint32),
# get_tensor('scalar', mindspore.int32), get_tensor('scalar', mindspore.uint64),
# get_tensor('scalar', mindspore.int64), get_tensor('scalar', mindspore.float16),
# get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64),
# get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8),
# get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16),
# get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32),
# get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64),
# get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16),
# get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64))

net(get_tensor('scalar', mindspore.bool_),
get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64), get_tensor('scalar', mindspore.float32), get_tensor('scalar', mindspore.float64),
get_tensor('array', mindspore.bool_), get_tensor('array', mindspore.uint8),
get_tensor('array', mindspore.int8), get_tensor('array', mindspore.uint16),
get_tensor('array', mindspore.int16), get_tensor('array', mindspore.uint32),
get_tensor('array', mindspore.int32), get_tensor('array', mindspore.uint64),
get_tensor('array', mindspore.int64), get_tensor('array', mindspore.float16),
get_tensor('array', mindspore.bool_),
get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64)) get_tensor('array', mindspore.float32), get_tensor('array', mindspore.float64))

Loading…
Cancel
Save