|
|
|
@@ -0,0 +1,74 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.ops.operations import _inner_ops as inner |
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_square_normal(): |
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="GPU") |
|
|
|
x_np = np.random.rand(2, 3, 4, 4).astype(np.float32) |
|
|
|
output_ms = P.Square()(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |
|
|
|
x_np = np.random.rand(2, 3, 1, 5, 4, 4).astype(np.float32) |
|
|
|
output_ms = P.Square()(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |
|
|
|
x_np = np.random.rand(2,).astype(np.float32) |
|
|
|
output_ms = P.Square()(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |
|
|
|
|
|
|
|
|
|
|
|
# Dynamic Shape Testing |
|
|
|
class SqaureNetDynamic(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(SqaureNetDynamic, self).__init__() |
|
|
|
self.square = P.Square() |
|
|
|
self.gpu_convert_to_dynamic_shape = inner.GpuConvertToDynamicShape() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x_dyn = self.gpu_convert_to_dynamic_shape(x) |
|
|
|
return self.square(x_dyn) |
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_square_dynamic(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="GPU") |
|
|
|
net = SqaureNetDynamic() |
|
|
|
x_np = np.random.rand(1, 3, 4, 4, 1).astype(np.float32) |
|
|
|
output_ms = net(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |
|
|
|
x_np = np.random.rand(2, 3, 4, 4, 8, 9).astype(np.float16) |
|
|
|
output_ms = net(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |
|
|
|
x_np = np.random.rand(1).astype(np.float32) |
|
|
|
output_ms = net(Tensor(x_np)) |
|
|
|
output_np = np.square(x_np) |
|
|
|
assert np.allclose(output_ms.asnumpy(), output_np) |