Merge pull request !3553 from tony_liu2/stagingtags/v0.7.0-beta
| @@ -31,13 +31,13 @@ def test_basic(): | |||
| arr[0] = 0 | |||
| x = np.array([0, 2, 3, 4, 5]) | |||
| assert np.array_equal(x, arr) | |||
| np.testing.assert_array_equal(x, arr) | |||
| assert n.type() == cde.DataType("int64") | |||
| arr2 = n.as_array() | |||
| arr[0] = 2 | |||
| x = np.array([2, 2, 3, 4, 5]) | |||
| assert np.array_equal(x, arr2) | |||
| np.testing.assert_array_equal(x, arr2) | |||
| assert n.type() == cde.DataType("int64") | |||
| assert arr.__array_interface__['data'] == arr2.__array_interface__['data'] | |||
| @@ -47,12 +47,12 @@ def test_strides(): | |||
| n1 = cde.Tensor(x[:, 1]) | |||
| arr = np.array(n1, copy=False) | |||
| assert np.array_equal(x[:, 1], arr) | |||
| np.testing.assert_array_equal(x[:, 1], arr) | |||
| n2 = cde.Tensor(x.transpose()) | |||
| arr = np.array(n2, copy=False) | |||
| assert np.array_equal(x.transpose(), arr) | |||
| np.testing.assert_array_equal(x.transpose(), arr) | |||
| if __name__ == '__main__': | |||
| @@ -41,7 +41,7 @@ def test_apply_generator_case(): | |||
| data2 = data2.batch(4) | |||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | |||
| assert np.array_equal(item1["data"], item2["data"]) | |||
| np.testing.assert_array_equal(item1["data"], item2["data"]) | |||
| def test_apply_imagefolder_case(): | |||
| @@ -64,7 +64,7 @@ def test_apply_imagefolder_case(): | |||
| data2 = data2.repeat(2) | |||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | |||
| assert np.array_equal(item1["image"], item2["image"]) | |||
| np.testing.assert_array_equal(item1["image"], item2["image"]) | |||
| def test_apply_flow_case_0(id_=0): | |||
| @@ -44,18 +44,18 @@ def test_coco_detection(): | |||
| assert image_shape[3] == (642, 675, 3) | |||
| assert image_shape[4] == (2268, 4032, 3) | |||
| assert image_shape[5] == (2268, 4032, 3) | |||
| assert np.array_equal(np.array([[10., 10., 10., 10.], [70., 70., 70., 70.]]), bbox[0]) | |||
| assert np.array_equal(np.array([[20., 20., 20., 20.], [80., 80., 80.0, 80.]]), bbox[1]) | |||
| assert np.array_equal(np.array([[30.0, 30.0, 30.0, 30.]]), bbox[2]) | |||
| assert np.array_equal(np.array([[40., 40., 40., 40.]]), bbox[3]) | |||
| assert np.array_equal(np.array([[50., 50., 50., 50.]]), bbox[4]) | |||
| assert np.array_equal(np.array([[60., 60., 60., 60.]]), bbox[5]) | |||
| assert np.array_equal(np.array([[1], [7]]), category_id[0]) | |||
| assert np.array_equal(np.array([[2], [8]]), category_id[1]) | |||
| assert np.array_equal(np.array([[3]]), category_id[2]) | |||
| assert np.array_equal(np.array([[4]]), category_id[3]) | |||
| assert np.array_equal(np.array([[5]]), category_id[4]) | |||
| assert np.array_equal(np.array([[6]]), category_id[5]) | |||
| np.testing.assert_array_equal(np.array([[10., 10., 10., 10.], [70., 70., 70., 70.]]), bbox[0]) | |||
| np.testing.assert_array_equal(np.array([[20., 20., 20., 20.], [80., 80., 80.0, 80.]]), bbox[1]) | |||
| np.testing.assert_array_equal(np.array([[30.0, 30.0, 30.0, 30.]]), bbox[2]) | |||
| np.testing.assert_array_equal(np.array([[40., 40., 40., 40.]]), bbox[3]) | |||
| np.testing.assert_array_equal(np.array([[50., 50., 50., 50.]]), bbox[4]) | |||
| np.testing.assert_array_equal(np.array([[60., 60., 60., 60.]]), bbox[5]) | |||
| np.testing.assert_array_equal(np.array([[1], [7]]), category_id[0]) | |||
| np.testing.assert_array_equal(np.array([[2], [8]]), category_id[1]) | |||
| np.testing.assert_array_equal(np.array([[3]]), category_id[2]) | |||
| np.testing.assert_array_equal(np.array([[4]]), category_id[3]) | |||
| np.testing.assert_array_equal(np.array([[5]]), category_id[4]) | |||
| np.testing.assert_array_equal(np.array([[6]]), category_id[5]) | |||
| def test_coco_stuff(): | |||
| data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Stuff", | |||
| @@ -76,25 +76,26 @@ def test_coco_stuff(): | |||
| assert image_shape[3] == (642, 675, 3) | |||
| assert image_shape[4] == (2268, 4032, 3) | |||
| assert image_shape[5] == (2268, 4032, 3) | |||
| assert np.array_equal(np.array([[10., 12., 13., 14., 15., 16., 17., 18., 19., 20.], | |||
| [70., 72., 73., 74., 75., -1., -1., -1., -1., -1.]]), | |||
| segmentation[0]) | |||
| assert np.array_equal(np.array([[0], [0]]), iscrowd[0]) | |||
| assert np.array_equal(np.array([[20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0], | |||
| [10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0]]), | |||
| segmentation[1]) | |||
| assert np.array_equal(np.array([[0], [1]]), iscrowd[1]) | |||
| assert np.array_equal(np.array([[40., 42., 43., 44., 45., 46., 47., 48., 49., 40., 41., 42.]]), segmentation[2]) | |||
| assert np.array_equal(np.array([[0]]), iscrowd[2]) | |||
| assert np.array_equal(np.array([[50., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.]]), | |||
| segmentation[3]) | |||
| assert np.array_equal(np.array([[0]]), iscrowd[3]) | |||
| assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74.]]), | |||
| segmentation[4]) | |||
| assert np.array_equal(np.array([[0]]), iscrowd[4]) | |||
| assert np.array_equal(np.array([[60., 62., 63., 64., 65., 66., 67.], [68., 69., 70., 71., 72., 73., 74.]]), | |||
| segmentation[5]) | |||
| assert np.array_equal(np.array([[0]]), iscrowd[5]) | |||
| np.testing.assert_array_equal(np.array([[10., 12., 13., 14., 15., 16., 17., 18., 19., 20.], | |||
| [70., 72., 73., 74., 75., -1., -1., -1., -1., -1.]]), | |||
| segmentation[0]) | |||
| np.testing.assert_array_equal(np.array([[0], [0]]), iscrowd[0]) | |||
| np.testing.assert_array_equal(np.array([[20.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0], | |||
| [10.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, -1.0]]), | |||
| segmentation[1]) | |||
| np.testing.assert_array_equal(np.array([[0], [1]]), iscrowd[1]) | |||
| np.testing.assert_array_equal(np.array([[40., 42., 43., 44., 45., 46., 47., 48., 49., 40., 41., 42.]]), | |||
| segmentation[2]) | |||
| np.testing.assert_array_equal(np.array([[0]]), iscrowd[2]) | |||
| np.testing.assert_array_equal(np.array([[50., 52., 53., 54., 55., 56., 57., 58., 59., 60., 61., 62., 63.]]), | |||
| segmentation[3]) | |||
| np.testing.assert_array_equal(np.array([[0]]), iscrowd[3]) | |||
| np.testing.assert_array_equal(np.array([[60., 62., 63., 64., 65., 66., 67., 68., 69., 70., 71., 72., 73., 74.]]), | |||
| segmentation[4]) | |||
| np.testing.assert_array_equal(np.array([[0]]), iscrowd[4]) | |||
| np.testing.assert_array_equal(np.array([[60., 62., 63., 64., 65., 66., 67.], [68., 69., 70., 71., 72., 73., 74.]]), | |||
| segmentation[5]) | |||
| np.testing.assert_array_equal(np.array([[0]]), iscrowd[5]) | |||
| def test_coco_keypoint(): | |||
| data1 = ds.CocoDataset(DATA_DIR, annotation_file=KEYPOINT_FILE, task="Keypoint", | |||
| @@ -111,16 +112,17 @@ def test_coco_keypoint(): | |||
| assert num_iter == 2 | |||
| assert image_shape[0] == (2268, 4032, 3) | |||
| assert image_shape[1] == (561, 595, 3) | |||
| assert np.array_equal(np.array([[368., 61., 1., 369., 52., 2., 0., 0., 0., 382., 48., 2., 0., 0., 0., 368., 84., 2., | |||
| 435., 81., 2., 362., 125., 2., 446., 125., 2., 360., 153., 2., 0., 0., 0., 397., | |||
| 167., 1., 439., 166., 1., 369., 193., 2., 461., 234., 2., 361., 246., 2., 474., | |||
| 287., 2.]]), keypoints[0]) | |||
| assert np.array_equal(np.array([[14]]), num_keypoints[0]) | |||
| assert np.array_equal(np.array([[244., 139., 2., 0., 0., 0., 226., 118., 2., 0., 0., 0., 154., 159., 2., 143., 261., | |||
| 2., 135., 312., 2., 271., 423., 2., 184., 530., 2., 261., 280., 2., 347., 592., 2., | |||
| 0., 0., 0., 123., 596., 2., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]]), | |||
| keypoints[1]) | |||
| assert np.array_equal(np.array([[10]]), num_keypoints[1]) | |||
| np.testing.assert_array_equal(np.array([[368., 61., 1., 369., 52., 2., 0., 0., 0., 382., 48., 2., 0., 0., 0., 368., | |||
| 84., 2., 435., 81., 2., 362., 125., 2., 446., 125., 2., 360., 153., 2., 0., | |||
| 0., 0., 397., 167., 1., 439., 166., 1., 369., 193., 2., 461., 234., 2., | |||
| 361., 246., 2., 474., 287., 2.]]), keypoints[0]) | |||
| np.testing.assert_array_equal(np.array([[14]]), num_keypoints[0]) | |||
| np.testing.assert_array_equal(np.array([[244., 139., 2., 0., 0., 0., 226., 118., 2., 0., 0., 0., 154., 159., 2., | |||
| 143., 261., 2., 135., 312., 2., 271., 423., 2., 184., 530., 2., 261., 280., | |||
| 2., 347., 592., 2., 0., 0., 0., 123., 596., 2., 0., 0., 0., 0., 0., 0., 0., | |||
| 0., 0., 0., 0., 0.]]), | |||
| keypoints[1]) | |||
| np.testing.assert_array_equal(np.array([[10]]), num_keypoints[1]) | |||
| def test_coco_panoptic(): | |||
| data1 = ds.CocoDataset(DATA_DIR, annotation_file=PANOPTIC_FILE, task="Panoptic", decode=True, shuffle=False) | |||
| @@ -139,15 +141,15 @@ def test_coco_panoptic(): | |||
| num_iter += 1 | |||
| assert num_iter == 2 | |||
| assert image_shape[0] == (2268, 4032, 3) | |||
| assert np.array_equal(np.array([[472, 173, 36, 48], [340, 22, 154, 301], [486, 183, 30, 35]]), bbox[0]) | |||
| assert np.array_equal(np.array([[1], [1], [2]]), category_id[0]) | |||
| assert np.array_equal(np.array([[0], [0], [0]]), iscrowd[0]) | |||
| assert np.array_equal(np.array([[705], [14062], [626]]), area[0]) | |||
| np.testing.assert_array_equal(np.array([[472, 173, 36, 48], [340, 22, 154, 301], [486, 183, 30, 35]]), bbox[0]) | |||
| np.testing.assert_array_equal(np.array([[1], [1], [2]]), category_id[0]) | |||
| np.testing.assert_array_equal(np.array([[0], [0], [0]]), iscrowd[0]) | |||
| np.testing.assert_array_equal(np.array([[705], [14062], [626]]), area[0]) | |||
| assert image_shape[1] == (642, 675, 3) | |||
| assert np.array_equal(np.array([[103, 133, 229, 422], [243, 175, 93, 164]]), bbox[1]) | |||
| assert np.array_equal(np.array([[1], [3]]), category_id[1]) | |||
| assert np.array_equal(np.array([[0], [0]]), iscrowd[1]) | |||
| assert np.array_equal(np.array([[43102], [6079]]), area[1]) | |||
| np.testing.assert_array_equal(np.array([[103, 133, 229, 422], [243, 175, 93, 164]]), bbox[1]) | |||
| np.testing.assert_array_equal(np.array([[1], [3]]), category_id[1]) | |||
| np.testing.assert_array_equal(np.array([[0], [0]]), iscrowd[1]) | |||
| np.testing.assert_array_equal(np.array([[43102], [6079]]), area[1]) | |||
| def test_coco_detection_classindex(): | |||
| data1 = ds.CocoDataset(DATA_DIR, annotation_file=ANNOTATION_FILE, task="Detection", decode=True) | |||
| @@ -38,7 +38,7 @@ def test_generator_0(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| @@ -60,7 +60,7 @@ def test_generator_1(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| @@ -82,9 +82,9 @@ def test_generator_2(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["col0"], golden) | |||
| np.testing.assert_array_equal(item["col0"], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["col1"], golden) | |||
| np.testing.assert_array_equal(item["col1"], golden) | |||
| i = i + 1 | |||
| @@ -102,7 +102,7 @@ def test_generator_3(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| if i == 64: | |||
| i = 0 | |||
| @@ -122,7 +122,7 @@ def test_generator_4(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 4 | |||
| @@ -142,7 +142,7 @@ def type_tester(t): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 4 | |||
| @@ -169,7 +169,7 @@ def type_tester_with_type_check(t, c): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 4 | |||
| @@ -204,7 +204,7 @@ def type_tester_with_type_check_2c(t, c): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t) | |||
| assert np.array_equal(item["data0"], golden) | |||
| np.testing.assert_array_equal(item["data0"], golden) | |||
| i = i + 4 | |||
| @@ -241,11 +241,11 @@ def test_generator_8(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i * 3]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i * 7, (i + 1) * 7], [(i + 2) * 7, (i + 3) * 7]]) | |||
| assert np.array_equal(item["out1"], golden) | |||
| np.testing.assert_array_equal(item["out1"], golden) | |||
| golden = np.array([[i + 1, i + 2], [i + 3, i + 4]]) | |||
| assert np.array_equal(item["out2"], golden) | |||
| np.testing.assert_array_equal(item["out2"], golden) | |||
| i = i + 1 | |||
| @@ -269,14 +269,14 @@ def test_generator_9(): | |||
| i = 0 | |||
| for data1, data2 in zip(data1, data2): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(data1[0], golden) | |||
| np.testing.assert_array_equal(data1[0], golden) | |||
| golden = np.array([[i * 3, (i + 1) * 3], [(i + 2) * 3, (i + 3) * 3]]) | |||
| assert np.array_equal(data1[1], golden) | |||
| np.testing.assert_array_equal(data1[1], golden) | |||
| golden = np.array([i * 3]) | |||
| assert np.array_equal(data2[0], golden) | |||
| np.testing.assert_array_equal(data2[0], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(data2[1], golden) | |||
| np.testing.assert_array_equal(data2[1], golden) | |||
| i = i + 1 | |||
| @@ -295,11 +295,11 @@ def test_generator_10(): | |||
| i = 0 | |||
| for item in data1.create_tuple_iterator(): | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item[1], golden) | |||
| np.testing.assert_array_equal(item[1], golden) | |||
| golden = np.array([[i * 5, (i + 1) * 5], [(i + 2) * 5, (i + 3) * 5]]) | |||
| assert np.array_equal(item[2], golden) | |||
| np.testing.assert_array_equal(item[2], golden) | |||
| i = i + 1 | |||
| @@ -321,9 +321,9 @@ def test_generator_11(): | |||
| # len should be 2 because col0 is dropped (not included in columns_order) | |||
| assert len(item) == 2 | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| golden = np.array([[i * 5, (i + 1) * 5], [(i + 2) * 5, (i + 3) * 5]]) | |||
| assert np.array_equal(item[1], golden) | |||
| np.testing.assert_array_equal(item[1], golden) | |||
| i = i + 1 | |||
| @@ -342,9 +342,9 @@ def test_generator_12(): | |||
| for item in data1.create_tuple_iterator(): | |||
| assert len(item) == 2 | |||
| golden = np.array([i * 5]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item[1], golden) | |||
| np.testing.assert_array_equal(item[1], golden) | |||
| i = i + 1 | |||
| data1 = ds.GeneratorDataset(generator_mc(2048), ["col0", "col1"]) | |||
| @@ -355,9 +355,9 @@ def test_generator_12(): | |||
| for item in data1.create_tuple_iterator(): | |||
| assert len(item) == 2 | |||
| golden = np.array([i * 5]) | |||
| assert np.array_equal(item[1], golden) | |||
| np.testing.assert_array_equal(item[1], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| @@ -376,18 +376,18 @@ def test_generator_13(): | |||
| for item in data1.create_tuple_iterator(): | |||
| assert len(item) == 2 | |||
| golden = np.array([i * 5]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item[1], golden) | |||
| np.testing.assert_array_equal(item[1], golden) | |||
| i = i + 1 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # len should be 2 because col0 is dropped (not included in columns_order) | |||
| assert len(item) == 2 | |||
| golden = np.array([i * 5]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["col1"], golden) | |||
| np.testing.assert_array_equal(item["col1"], golden) | |||
| i = i + 1 | |||
| @@ -402,7 +402,7 @@ def test_generator_14(): | |||
| i = 0 | |||
| for data in ds1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(data["data"], golden) | |||
| np.testing.assert_array_equal(data["data"], golden) | |||
| i = i + 1 | |||
| if i == 256: | |||
| i = 0 | |||
| @@ -420,7 +420,7 @@ def test_generator_15(): | |||
| i = 0 | |||
| for data in ds1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(data["data"], golden) | |||
| np.testing.assert_array_equal(data["data"], golden) | |||
| i = i + 1 | |||
| if i == 256: | |||
| i = 0 | |||
| @@ -439,9 +439,9 @@ def test_generator_16(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["col0"], golden) | |||
| np.testing.assert_array_equal(item["col0"], golden) | |||
| golden = np.array([i + 1]) | |||
| assert np.array_equal(item["col1"], golden) | |||
| np.testing.assert_array_equal(item["col1"], golden) | |||
| i = i + 1 | |||
| @@ -459,9 +459,9 @@ def test_generator_17(): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["col0"], golden) | |||
| np.testing.assert_array_equal(item["col0"], golden) | |||
| golden = np.array([i + 1]) | |||
| assert np.array_equal(item["col1"], golden) | |||
| np.testing.assert_array_equal(item["col1"], golden) | |||
| i = i + 1 | |||
| @@ -519,7 +519,7 @@ def test_generator_sequential_sampler(): | |||
| i = 0 | |||
| for data in ds1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(data["data"], golden) | |||
| np.testing.assert_array_equal(data["data"], golden) | |||
| i = i + 1 | |||
| @@ -537,7 +537,7 @@ def test_generator_distributed_sampler(): | |||
| i = sid | |||
| for data in ds1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(data["data"], golden) | |||
| np.testing.assert_array_equal(data["data"], golden) | |||
| i = i + 8 | |||
| @@ -596,7 +596,7 @@ def type_tester_with_type_check_2c_schema(t, c): | |||
| i = 0 | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t) | |||
| assert np.array_equal(item["data0"], golden) | |||
| np.testing.assert_array_equal(item["data0"], golden) | |||
| i = i + 4 | |||
| @@ -162,7 +162,7 @@ def test_tfrecord_schema(): | |||
| for d1, d2 in zip(data1, data2): | |||
| for t1, t2 in zip(d1, d2): | |||
| assert np.array_equal(t1, t2) | |||
| np.testing.assert_array_equal(t1, t2) | |||
| def test_tfrecord_shuffle(): | |||
| @@ -174,7 +174,7 @@ def test_tfrecord_shuffle(): | |||
| for d1, d2 in zip(data1, data2): | |||
| for t1, t2 in zip(d1, d2): | |||
| assert np.array_equal(t1, t2) | |||
| np.testing.assert_array_equal(t1, t2) | |||
| def test_tfrecord_shard(): | |||
| @@ -136,7 +136,7 @@ def test_generator_dict_0(): | |||
| # create the iterator inside the loop declaration | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| def test_generator_dict_1(): | |||
| @@ -154,7 +154,7 @@ def test_generator_dict_1(): | |||
| # Create iterator outside the epoch for loop. | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -171,7 +171,7 @@ def test_generator_dict_2(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -193,7 +193,7 @@ def test_generator_dict_3(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| # optional | |||
| @@ -217,7 +217,7 @@ def test_generator_dict_4(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -240,7 +240,7 @@ def test_generator_dict_4_1(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -265,7 +265,7 @@ def test_generator_dict_4_2(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -287,7 +287,7 @@ def test_generator_dict_5(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -295,7 +295,7 @@ def test_generator_dict_5(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -320,7 +320,7 @@ def test_generator_tuple_0(): | |||
| # create the iterator inside the loop declaration | |||
| for item in data1.create_tuple_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| def test_generator_tuple_1(): | |||
| @@ -338,7 +338,7 @@ def test_generator_tuple_1(): | |||
| # Create iterator outside the epoch for loop. | |||
| for item in data1.create_tuple_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -355,7 +355,7 @@ def test_generator_tuple_2(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -377,7 +377,7 @@ def test_generator_tuple_3(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| # optional | |||
| @@ -401,7 +401,7 @@ def test_generator_tuple_4(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -424,7 +424,7 @@ def test_generator_tuple_5(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -432,7 +432,7 @@ def test_generator_tuple_5(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 | |||
| @@ -457,7 +457,7 @@ def test_generator_tuple_repeat_1(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 | |||
| @@ -465,7 +465,7 @@ def test_generator_tuple_repeat_1(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 | |||
| @@ -492,7 +492,7 @@ def test_generator_tuple_repeat_repeat_1(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| @@ -500,7 +500,7 @@ def test_generator_tuple_repeat_repeat_1(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| @@ -526,7 +526,7 @@ def test_generator_tuple_repeat_repeat_2(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| # optional | |||
| @@ -551,7 +551,7 @@ def test_generator_tuple_repeat_repeat_3(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| @@ -559,7 +559,7 @@ def test_generator_tuple_repeat_repeat_3(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| @@ -579,7 +579,7 @@ def test_generator_reusedataset(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 | |||
| @@ -589,7 +589,7 @@ def test_generator_reusedataset(): | |||
| i = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([i % 64]) | |||
| assert np.array_equal(item[0], golden) | |||
| np.testing.assert_array_equal(item[0], golden) | |||
| i = i + 1 | |||
| assert i == 64 * 2 * 3 | |||
| @@ -600,7 +600,7 @@ def test_generator_reusedataset(): | |||
| sample = 0 | |||
| for item in iter1: # each data is a dictionary | |||
| golden = np.array([[i % 64], [(i + 1) % 64]]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 2 | |||
| sample = sample + 1 | |||
| assert sample == 64 * 3 | |||
| @@ -67,7 +67,7 @@ def test_shuffle(): | |||
| for d1, d2 in zip(data1, data2): | |||
| for t1, t2 in zip(d1, d2): | |||
| assert np.array_equal(t1, t2) | |||
| np.testing.assert_array_equal(t1, t2) | |||
| ds.config.set_seed(1) | |||
| DATA_ALL_FILE = "../data/dataset/testTextFileDataset/*" | |||
| @@ -77,7 +77,7 @@ def test_shuffle(): | |||
| for d1, d2 in zip(data1, data2): | |||
| for t1, t2 in zip(d1, d2): | |||
| assert np.array_equal(t1, t2) | |||
| np.testing.assert_array_equal(t1, t2) | |||
| ds.config.set_seed(1) | |||
| TRAIN_FILE = '../data/dataset/testCLUE/afqmc/train.json' | |||
| @@ -87,7 +87,7 @@ def test_shuffle(): | |||
| for d1, d2 in zip(data1, data2): | |||
| for t1, t2 in zip(d1, d2): | |||
| assert np.array_equal(t1, t2) | |||
| np.testing.assert_array_equal(t1, t2) | |||
| if __name__ == "__main__": | |||
| @@ -63,8 +63,8 @@ def test_batch_padding_01(): | |||
| data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([2, 2], -2), "col1d": ([2], -1)}) | |||
| data1 = data1.repeat(2) | |||
| for data in data1.create_dict_iterator(): | |||
| assert np.array_equal([[0, -1], [1, -1]], data["col1d"]) | |||
| assert np.array_equal([[[100, -2], [200, -2]], [[101, -2], [201, -2]]], data["col2d"]) | |||
| np.testing.assert_array_equal([[0, -1], [1, -1]], data["col1d"]) | |||
| np.testing.assert_array_equal([[[100, -2], [200, -2]], [[101, -2], [201, -2]]], data["col2d"]) | |||
| def test_batch_padding_02(): | |||
| @@ -72,8 +72,8 @@ def test_batch_padding_02(): | |||
| data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={"col2d": ([1, 2], -2)}) | |||
| data1 = data1.repeat(2) | |||
| for data in data1.create_dict_iterator(): | |||
| assert np.array_equal([[0], [1]], data["col1d"]) | |||
| assert np.array_equal([[[100, -2]], [[101, -2]]], data["col2d"]) | |||
| np.testing.assert_array_equal([[0], [1]], data["col1d"]) | |||
| np.testing.assert_array_equal([[[100, -2]], [[101, -2]]], data["col2d"]) | |||
| def test_batch_padding_03(): | |||
| @@ -83,10 +83,10 @@ def test_batch_padding_03(): | |||
| res = dict() | |||
| for ind, data in enumerate(data1.create_dict_iterator()): | |||
| res[ind] = data["col"].copy() | |||
| assert np.array_equal(res[0], [[0, -1], [0, 1]]) | |||
| assert np.array_equal(res[1], [[0, 1, 2, -1], [0, 1, 2, 3]]) | |||
| assert np.array_equal(res[2], [[0, -1], [0, 1]]) | |||
| assert np.array_equal(res[3], [[0, 1, 2, -1], [0, 1, 2, 3]]) | |||
| np.testing.assert_array_equal(res[0], [[0, -1], [0, 1]]) | |||
| np.testing.assert_array_equal(res[1], [[0, 1, 2, -1], [0, 1, 2, 3]]) | |||
| np.testing.assert_array_equal(res[2], [[0, -1], [0, 1]]) | |||
| np.testing.assert_array_equal(res[3], [[0, 1, 2, -1], [0, 1, 2, 3]]) | |||
| def test_batch_padding_04(): | |||
| @@ -94,8 +94,8 @@ def test_batch_padding_04(): | |||
| data1 = data1.batch(batch_size=2, drop_remainder=False, pad_info={}) # pad automatically | |||
| data1 = data1.repeat(2) | |||
| for data in data1.create_dict_iterator(): | |||
| assert np.array_equal(data["col1"], [[0, 0], [0, 1]]) | |||
| assert np.array_equal(data["col2"], [[100, 0], [100, 101]]) | |||
| np.testing.assert_array_equal(data["col1"], [[0, 0], [0, 1]]) | |||
| np.testing.assert_array_equal(data["col2"], [[100, 0], [100, 101]]) | |||
| def test_batch_padding_05(): | |||
| @@ -103,9 +103,9 @@ def test_batch_padding_05(): | |||
| data1 = data1.batch(batch_size=3, drop_remainder=False, | |||
| pad_info={"col2": ([2, None], -2), "col1": (None, -1)}) # pad automatically | |||
| for data in data1.create_dict_iterator(): | |||
| assert np.array_equal(data["col1"], [[[0, -1, -1]], [[0, 1, -1]], [[0, 1, 2]]]) | |||
| assert np.array_equal(data["col2"], [[[100, -2, -2], [-2, -2, -2]], [[100, 101, -2], [-2, -2, -2]], | |||
| [[100, 101, 102], [-2, -2, -2]]]) | |||
| np.testing.assert_array_equal(data["col1"], [[[0, -1, -1]], [[0, 1, -1]], [[0, 1, 2]]]) | |||
| np.testing.assert_array_equal(data["col2"], [[[100, -2, -2], [-2, -2, -2]], [[100, 101, -2], [-2, -2, -2]], | |||
| [[100, 101, 102], [-2, -2, -2]]]) | |||
| def batch_padding_performance_3d(): | |||
| @@ -197,7 +197,7 @@ def test_pad_via_map(): | |||
| res_from_batch = pad_batch_config() | |||
| assert len(res_from_batch) == len(res_from_batch) | |||
| for i, _ in enumerate(res_from_map): | |||
| assert np.array_equal(res_from_map[i], res_from_batch[i]) | |||
| np.testing.assert_array_equal(res_from_map[i], res_from_batch[i]) | |||
| if __name__ == '__main__': | |||
| @@ -39,7 +39,7 @@ def test_case_0(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| i = i + 4 | |||
| @@ -60,9 +60,9 @@ def test_case_1(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out1"], golden) | |||
| np.testing.assert_array_equal(item["out1"], golden) | |||
| i = i + 4 | |||
| @@ -84,7 +84,7 @@ def test_case_2(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| i = i + 4 | |||
| @@ -106,11 +106,11 @@ def test_case_3(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out1"], golden) | |||
| np.testing.assert_array_equal(item["out1"], golden) | |||
| golden = np.array([[i * 2 + 1, (i + 1) * 2 + 1], [(i + 2) * 2 + 1, (i + 3) * 2 + 1]]) | |||
| assert np.array_equal(item["out2"], golden) | |||
| np.testing.assert_array_equal(item["out2"], golden) | |||
| i = i + 4 | |||
| @@ -132,11 +132,11 @@ def test_case_4(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out1"], golden) | |||
| np.testing.assert_array_equal(item["out1"], golden) | |||
| golden = np.array([[i * 2 + 1, (i + 1) * 2 + 1], [(i + 2) * 2 + 1, (i + 3) * 2 + 1]]) | |||
| assert np.array_equal(item["out2"], golden) | |||
| np.testing.assert_array_equal(item["out2"], golden) | |||
| i = i + 4 | |||
| @@ -159,7 +159,7 @@ def test_case_5(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[1, 1], [1, 1]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| def test_case_6(): | |||
| @@ -178,7 +178,7 @@ def test_case_6(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i * 4, (i + 1) * 4], [(i + 2) * 4, (i + 3) * 4]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| i = i + 4 | |||
| @@ -198,7 +198,7 @@ def test_case_7(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| i = i + 4 | |||
| @@ -221,11 +221,11 @@ def test_case_8(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i, i + 1], [i + 2, i + 3]]) | |||
| assert np.array_equal(item["out0"], golden) | |||
| np.testing.assert_array_equal(item["out0"], golden) | |||
| golden = np.array([[i * 2, (i + 1) * 2], [(i + 2) * 2, (i + 3) * 2]]) | |||
| assert np.array_equal(item["out1"], golden) | |||
| np.testing.assert_array_equal(item["out1"], golden) | |||
| golden = np.array([[i * 2 + 1, (i + 1) * 2 + 1], [(i + 2) * 2 + 1, (i + 3) * 2 + 1]]) | |||
| assert np.array_equal(item["out2"], golden) | |||
| np.testing.assert_array_equal(item["out2"], golden) | |||
| i = i + 4 | |||
| @@ -246,7 +246,7 @@ def test_case_9(): | |||
| for item in data1.create_dict_iterator(): # each data is a dictionary | |||
| # In this test, the dataset is 2x2 sequential tensors | |||
| golden = np.array([[i * 2 + 3, (i + 1) * 2 + 3], [(i + 2) * 2 + 3, (i + 3) * 2 + 3]]) | |||
| assert np.array_equal(item["out"], golden) | |||
| np.testing.assert_array_equal(item["out"], golden) | |||
| i = i + 4 | |||
| @@ -167,7 +167,7 @@ def test_nested_repeat5(): | |||
| data = data.repeat(3) | |||
| for _, d in enumerate(data): | |||
| assert np.array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| np.testing.assert_array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| assert sum([1 for _ in data]) == 6 | |||
| @@ -180,7 +180,7 @@ def test_nested_repeat6(): | |||
| data = data.repeat(3) | |||
| for _, d in enumerate(data): | |||
| assert np.array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| np.testing.assert_array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| assert sum([1 for _ in data]) == 6 | |||
| @@ -193,7 +193,7 @@ def test_nested_repeat7(): | |||
| data = data.batch(3) | |||
| for _, d in enumerate(data): | |||
| assert np.array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| np.testing.assert_array_equal(d[0], np.asarray([[0], [1], [2]])) | |||
| assert sum([1 for _ in data]) == 6 | |||
| @@ -207,9 +207,9 @@ def test_nested_repeat8(): | |||
| for i, d in enumerate(data): | |||
| if i % 2 == 0: | |||
| assert np.array_equal(d[0], np.asarray([[0], [1]])) | |||
| np.testing.assert_array_equal(d[0], np.asarray([[0], [1]])) | |||
| else: | |||
| assert np.array_equal(d[0], np.asarray([[2]])) | |||
| np.testing.assert_array_equal(d[0], np.asarray([[2]])) | |||
| assert sum([1 for _ in data]) == 6 * 2 | |||
| @@ -324,7 +324,7 @@ def test_case_03(add_and_remove_cv_file): | |||
| i = 0 | |||
| for item in d2.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([i]) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 1 | |||
| @@ -354,7 +354,7 @@ def type_tester(t): | |||
| for item in d2.create_dict_iterator(): # each data is a dictionary | |||
| golden = np.array([[i], [i + 1], [i + 2], [i + 3]], dtype=t) | |||
| logger.info(item) | |||
| assert np.array_equal(item["data"], golden) | |||
| np.testing.assert_array_equal(item["data"], golden) | |||
| i = i + 4 | |||
| if i == 64: | |||
| i = 0 | |||
| @@ -79,12 +79,12 @@ def test_imagefolder(remove_json_files=True): | |||
| # Iterate and compare the data in the original pipeline (data1) against the deserialized pipeline (data2) | |||
| for item1, item2, item3, item4 in zip(data1.create_dict_iterator(), data2.create_dict_iterator(), | |||
| data3.create_dict_iterator(), data4.create_dict_iterator()): | |||
| assert np.array_equal(item1['image'], item2['image']) | |||
| assert np.array_equal(item1['image'], item3['image']) | |||
| assert np.array_equal(item1['label'], item2['label']) | |||
| assert np.array_equal(item1['label'], item3['label']) | |||
| assert np.array_equal(item3['image'], item4['image']) | |||
| assert np.array_equal(item3['label'], item4['label']) | |||
| np.testing.assert_array_equal(item1['image'], item2['image']) | |||
| np.testing.assert_array_equal(item1['image'], item3['image']) | |||
| np.testing.assert_array_equal(item1['label'], item2['label']) | |||
| np.testing.assert_array_equal(item1['label'], item3['label']) | |||
| np.testing.assert_array_equal(item3['image'], item4['image']) | |||
| np.testing.assert_array_equal(item3['label'], item4['label']) | |||
| num_samples += 1 | |||
| logger.info("Number of data in data1: {}".format(num_samples)) | |||
| @@ -119,10 +119,10 @@ def test_mnist_dataset(remove_json_files=True): | |||
| num = 0 | |||
| for data1, data2, data3 in zip(data1.create_dict_iterator(), data2.create_dict_iterator(), | |||
| data3.create_dict_iterator()): | |||
| assert np.array_equal(data1['image'], data2['image']) | |||
| assert np.array_equal(data1['image'], data3['image']) | |||
| assert np.array_equal(data1['label'], data2['label']) | |||
| assert np.array_equal(data1['label'], data3['label']) | |||
| np.testing.assert_array_equal(data1['image'], data2['image']) | |||
| np.testing.assert_array_equal(data1['image'], data3['image']) | |||
| np.testing.assert_array_equal(data1['label'], data2['label']) | |||
| np.testing.assert_array_equal(data1['label'], data3['label']) | |||
| num += 1 | |||
| logger.info("mnist total num samples is {}".format(str(num))) | |||
| @@ -160,10 +160,10 @@ def test_zip_dataset(remove_json_files=True): | |||
| num_cols = len(d0) | |||
| offset = 0 | |||
| for t1 in d0: | |||
| assert np.array_equal(t1, d3[offset]) | |||
| assert np.array_equal(t1, d3[offset + num_cols]) | |||
| assert np.array_equal(t1, d4[offset]) | |||
| assert np.array_equal(t1, d4[offset + num_cols]) | |||
| np.testing.assert_array_equal(t1, d3[offset]) | |||
| np.testing.assert_array_equal(t1, d3[offset + num_cols]) | |||
| np.testing.assert_array_equal(t1, d4[offset]) | |||
| np.testing.assert_array_equal(t1, d4[offset + num_cols]) | |||
| offset += 1 | |||
| rows += 1 | |||
| assert rows == 12 | |||
| @@ -199,7 +199,7 @@ def test_random_crop(): | |||
| for item1, item1_1, item2 in zip(data1.create_dict_iterator(), data1_1.create_dict_iterator(), | |||
| data2.create_dict_iterator()): | |||
| assert np.array_equal(item1['image'], item1_1['image']) | |||
| np.testing.assert_array_equal(item1['image'], item1_1['image']) | |||
| _ = item2["image"] | |||
| # Restore configuration num_parallel_workers | |||
| @@ -36,22 +36,22 @@ def test_batch_corner_cases(): | |||
| tst1, tst2, tst3, tst4 = [], [], [], [] | |||
| # case 1 & 2, where batch_size is greater than the entire epoch, with drop equals to both val | |||
| test_repeat_batch(gen_num=2, repeats=4, batch_size=7, drop=False, res=tst1) | |||
| assert np.array_equal(np.array([[0], [1], [0], [1], [0], [1], [0]]), tst1[0]), "\nATTENTION BATCH FAILED\n" | |||
| assert np.array_equal(np.array([[1]]), tst1[1]), "\nATTENTION TEST BATCH FAILED\n" | |||
| np.testing.assert_array_equal(np.array([[0], [1], [0], [1], [0], [1], [0]]), tst1[0], "\nATTENTION BATCH FAILED\n") | |||
| np.testing.assert_array_equal(np.array([[1]]), tst1[1], "\nATTENTION TEST BATCH FAILED\n") | |||
| assert len(tst1) == 2, "\nATTENTION TEST BATCH FAILED\n" | |||
| test_repeat_batch(gen_num=2, repeats=4, batch_size=5, drop=True, res=tst2) | |||
| assert np.array_equal(np.array([[0], [1], [0], [1], [0]]), tst2[0]), "\nATTENTION BATCH FAILED\n" | |||
| np.testing.assert_array_equal(np.array([[0], [1], [0], [1], [0]]), tst2[0], "\nATTENTION BATCH FAILED\n") | |||
| assert len(tst2) == 1, "\nATTENTION TEST BATCH FAILED\n" | |||
| # case 3 & 4, batch before repeat with different drop | |||
| test_batch_repeat(gen_num=5, repeats=2, batch_size=4, drop=True, res=tst3) | |||
| assert np.array_equal(np.array([[0], [1], [2], [3]]), tst3[0]), "\nATTENTION BATCH FAILED\n" | |||
| assert np.array_equal(tst3[0], tst3[1]), "\nATTENTION BATCH FAILED\n" | |||
| np.testing.assert_array_equal(np.array([[0], [1], [2], [3]]), tst3[0], "\nATTENTION BATCH FAILED\n") | |||
| np.testing.assert_array_equal(tst3[0], tst3[1], "\nATTENTION BATCH FAILED\n") | |||
| assert len(tst3) == 2, "\nATTENTION BATCH FAILED\n" | |||
| test_batch_repeat(gen_num=5, repeats=2, batch_size=4, drop=False, res=tst4) | |||
| assert np.array_equal(np.array([[0], [1], [2], [3]]), tst4[0]), "\nATTENTION BATCH FAILED\n" | |||
| assert np.array_equal(tst4[0], tst4[2]), "\nATTENTION BATCH FAILED\n" | |||
| assert np.array_equal(tst4[1], np.array([[4]])), "\nATTENTION BATCH FAILED\n" | |||
| assert np.array_equal(tst4[1], tst4[3]), "\nATTENTION BATCH FAILED\n" | |||
| np.testing.assert_array_equal(np.array([[0], [1], [2], [3]]), tst4[0], "\nATTENTION BATCH FAILED\n") | |||
| np.testing.assert_array_equal(tst4[0], tst4[2], "\nATTENTION BATCH FAILED\n") | |||
| np.testing.assert_array_equal(tst4[1], np.array([[4]]), "\nATTENTION BATCH FAILED\n") | |||
| np.testing.assert_array_equal(tst4[1], tst4[3], "\nATTENTION BATCH FAILED\n") | |||
| assert len(tst4) == 4, "\nATTENTION BATCH FAILED\n" | |||
| @@ -56,7 +56,7 @@ def _compare_to_golden(golden_ref_dir, result_dict): | |||
| """ | |||
| test_array = np.array(list(result_dict.values())) | |||
| golden_array = np.load(golden_ref_dir, allow_pickle=True)['arr_0'] | |||
| assert np.array_equal(test_array, golden_array) | |||
| np.testing.assert_array_equal(test_array, golden_array) | |||
| def _compare_to_golden_dict(golden_ref_dir, result_dict): | |||