|
|
@@ -23,25 +23,24 @@ to improve their training models. |
|
|
class attributes (self.xxx) to support save() and load(). |
|
|
class attributes (self.xxx) to support save() and load(). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset as ds |
|
|
|
|
|
>>> import mindspore.dataset.transforms.c_transforms as c_transforms |
|
|
|
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.vision import Border, Inter |
|
|
>>> from mindspore.dataset.vision import Border, Inter |
|
|
>>> |
|
|
|
|
|
>>> dataset_dir = "path/to/imagefolder_directory" |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_dir = "/path/to/image_folder_dataset_directory" |
|
|
>>> # create a dataset that reads all files in dataset_dir with 8 threads |
|
|
>>> # create a dataset that reads all files in dataset_dir with 8 threads |
|
|
>>> data1 = ds.ImageFolderDataset(dataset_dir, num_parallel_workers=8) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = ds.ImageFolderDataset(image_folder_dataset_dir, |
|
|
|
|
|
... num_parallel_workers=8) |
|
|
>>> # create a list of transformations to be applied to the image data |
|
|
>>> # create a list of transformations to be applied to the image data |
|
|
>>> transforms_list = [c_vision.Decode(), |
|
|
>>> transforms_list = [c_vision.Decode(), |
|
|
>>> c_vision.Resize((256, 256), interpolation=Inter.LINEAR), |
|
|
|
|
|
>>> c_vision.RandomCrop(200, padding_mode=Border.EDGE), |
|
|
|
|
|
>>> c_vision.RandomRotation((0, 15)), |
|
|
|
|
|
>>> c_vision.Normalize((100, 115.0, 121.0), (71.0, 68.0, 70.0)), |
|
|
|
|
|
>>> c_vision.HWC2CHW()] |
|
|
|
|
|
|
|
|
... c_vision.Resize((256, 256), interpolation=Inter.LINEAR), |
|
|
|
|
|
... c_vision.RandomCrop(200, padding_mode=Border.EDGE), |
|
|
|
|
|
... c_vision.RandomRotation((0, 15)), |
|
|
|
|
|
... c_vision.Normalize((100, 115.0, 121.0), (71.0, 68.0, 70.0)), |
|
|
|
|
|
... c_vision.HWC2CHW()] |
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> # apply the transformation to the dataset through data1.map() |
|
|
>>> # apply the transformation to the dataset through data1.map() |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns="image") |
|
|
|
|
|
>>> data1 = data1.map(operations=onehot_op, input_columns="label") |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns="image") |
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=onehot_op, |
|
|
|
|
|
... input_columns="label") |
|
|
""" |
|
|
""" |
|
|
import numbers |
|
|
import numbers |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
@@ -91,10 +90,9 @@ class AutoContrast(cde.AutoContrastOp): |
|
|
ignore (Union[int, sequence], optional): Pixel values to ignore (default=None). |
|
|
ignore (Union[int, sequence], optional): Pixel values to ignore (default=None). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.AutoContrast(cutoff=10.0, ignore=[10, 20])] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.AutoContrast(cutoff=10.0, ignore=[10, 20])] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_auto_contrast |
|
|
@check_auto_contrast |
|
|
@@ -121,10 +119,9 @@ class RandomSharpness(cde.RandomSharpnessOp): |
|
|
ValueError: If degrees is in (max, min) format instead of (min, max). |
|
|
ValueError: If degrees is in (max, min) format instead of (min, max). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomSharpness(degrees=(0.2, 1.9))] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomSharpness(degrees=(0.2, 1.9))] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_positive_degrees |
|
|
@check_positive_degrees |
|
|
@@ -138,10 +135,9 @@ class Equalize(cde.EqualizeOp): |
|
|
Apply histogram equalization on input image. |
|
|
Apply histogram equalization on input image. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Equalize()] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Equalize()] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -150,10 +146,9 @@ class Invert(cde.InvertOp): |
|
|
Apply invert on input image in RGB mode. |
|
|
Apply invert on input image in RGB mode. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Invert()] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Invert()] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@@ -166,10 +161,9 @@ class Decode(cde.DecodeOp): |
|
|
If True means format of decoded image is RGB else BGR(deprecated). |
|
|
If True means format of decoded image is RGB else BGR(deprecated). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlip()] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlip()] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
def __init__(self, rgb=True): |
|
|
def __init__(self, rgb=True): |
|
|
@@ -205,15 +199,14 @@ class CutMixBatch(cde.CutMixBatchOp): |
|
|
prob (float, optional): The probability by which CutMix is applied to each image (default = 1.0). |
|
|
prob (float, optional): The probability by which CutMix is applied to each image (default = 1.0). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.transforms.c_transforms as c_transforms |
|
|
|
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import ImageBatchFormat |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import ImageBatchFormat |
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> data1 = data1.map(operations=onehot_op, input_columns=["label"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset= image_folder_dataset.map(operations=onehot_op, |
|
|
|
|
|
... input_columns=["label"]) |
|
|
>>> cutmix_batch_op = c_vision.CutMixBatch(ImageBatchFormat.NHWC, 1.0, 0.5) |
|
|
>>> cutmix_batch_op = c_vision.CutMixBatch(ImageBatchFormat.NHWC, 1.0, 0.5) |
|
|
>>> data1 = data1.batch(5) |
|
|
|
|
|
>>> data1 = data1.map(operations=cutmix_batch_op, input_columns=["image", "label"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.batch(5) |
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=cutmix_batch_op, |
|
|
|
|
|
... input_columns=["image", "label"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_cut_mix_batch_c |
|
|
@check_cut_mix_batch_c |
|
|
@@ -233,10 +226,9 @@ class CutOut(cde.CutOutOp): |
|
|
num_patches (int, optional): Number of patches to be cut out of an image (default=1). |
|
|
num_patches (int, optional): Number of patches to be cut out of an image (default=1). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.CutOut(80, num_patches=10)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.CutOut(80, num_patches=10)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_cutout |
|
|
@check_cutout |
|
|
@@ -258,14 +250,13 @@ class MixUpBatch(cde.MixUpBatchOp): |
|
|
alpha (float, optional): Hyperparameter of beta distribution (default = 1.0). |
|
|
alpha (float, optional): Hyperparameter of beta distribution (default = 1.0). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.transforms.c_transforms as c_transforms |
|
|
|
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> onehot_op = c_transforms.OneHot(num_classes=10) |
|
|
>>> data1 = data1.map(operations=onehot_op, input_columns=["label"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset= image_folder_dataset.map(operations=onehot_op, |
|
|
|
|
|
... input_columns=["label"]) |
|
|
>>> mixup_batch_op = c_vision.MixUpBatch(alpha=0.9) |
|
|
>>> mixup_batch_op = c_vision.MixUpBatch(alpha=0.9) |
|
|
>>> data1 = data1.batch(5) |
|
|
|
|
|
>>> data1 = data1.map(operations=mixup_batch_op, input_columns=["image", "label"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.batch(5) |
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=mixup_batch_op, |
|
|
|
|
|
... input_columns=["image", "label"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_mix_up_batch_c |
|
|
@check_mix_up_batch_c |
|
|
@@ -285,12 +276,11 @@ class Normalize(cde.NormalizeOp): |
|
|
The standard deviation values must be in range (0.0, 255.0]. |
|
|
The standard deviation values must be in range (0.0, 255.0]. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> normalize_op = c_vision.Normalize(mean=[121.0, 115.0, 100.0], std=[70.0, 68.0, 71.0]) |
|
|
>>> normalize_op = c_vision.Normalize(mean=[121.0, 115.0, 100.0], std=[70.0, 68.0, 71.0]) |
|
|
>>> transforms_list = [decode_op, normalize_op] |
|
|
>>> transforms_list = [decode_op, normalize_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_normalize_c |
|
|
@check_normalize_c |
|
|
@@ -332,12 +322,13 @@ class NormalizePad(cde.NormalizePadOp): |
|
|
dtype (str): Set the output data type of normalized image (default is "float32"). |
|
|
dtype (str): Set the output data type of normalized image (default is "float32"). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> normalize_op = c_vision.NormalizePad(mean=[121.0, 115.0, 100.0], std=[70.0, 68.0, 71.0], dtype="float32") |
|
|
|
|
|
|
|
|
>>> normalize_pad_op = c_vision.NormalizePad(mean=[121.0, 115.0, 100.0], |
|
|
|
|
|
... std=[70.0, 68.0, 71.0], |
|
|
|
|
|
... dtype="float32") |
|
|
>>> transforms_list = [decode_op, normalize_pad_op] |
|
|
>>> transforms_list = [decode_op, normalize_pad_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_normalizepad_c |
|
|
@check_normalizepad_c |
|
|
@@ -417,14 +408,15 @@ class RandomAffine(cde.RandomAffineOp): |
|
|
TypeError: If fill_value is not a single integer or a 3-tuple. |
|
|
TypeError: If fill_value is not a single integer or a 3-tuple. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> random_affine_op = c_vision.RandomAffine(degrees=15, translate=(-0.1, 0.1, 0, 0), scale=(0.9, 1.1), |
|
|
|
|
|
>>> resample=Inter.NEAREST) |
|
|
|
|
|
|
|
|
>>> random_affine_op = c_vision.RandomAffine(degrees=15, |
|
|
|
|
|
... translate=(-0.1, 0.1, 0, 0), |
|
|
|
|
|
... scale=(0.9, 1.1), |
|
|
|
|
|
... resample=Inter.NEAREST) |
|
|
>>> transforms_list = [decode_op, random_affine_op] |
|
|
>>> transforms_list = [decode_op, random_affine_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_affine |
|
|
@check_random_affine |
|
|
@@ -502,12 +494,12 @@ class RandomCrop(cde.RandomCropOp): |
|
|
value of edge. |
|
|
value of edge. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Border |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=Border.EDGE) |
|
|
>>> random_crop_op = c_vision.RandomCrop(512, [200, 200, 200, 200], padding_mode=Border.EDGE) |
|
|
>>> transforms_list = [decode_op, random_crop_op] |
|
|
>>> transforms_list = [decode_op, random_crop_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_crop |
|
|
@check_random_crop |
|
|
@@ -564,12 +556,11 @@ class RandomCropWithBBox(cde.RandomCropWithBBoxOp): |
|
|
value of edge. |
|
|
value of edge. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> random_crop_with_bbox_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200]) |
|
|
>>> random_crop_with_bbox_op = c_vision.RandomCrop([512, 512], [200, 200, 200, 200]) |
|
|
>>> transforms_list = [decode_op, random_crop_with_bbox_op] |
|
|
>>> transforms_list = [decode_op, random_crop_with_bbox_op] |
|
|
>>> data3 = data3.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_crop |
|
|
@check_random_crop |
|
|
@@ -602,10 +593,9 @@ class RandomHorizontalFlip(cde.RandomHorizontalFlipOp): |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlip(0.75)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlip(0.75)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_prob |
|
|
@check_prob |
|
|
@@ -622,10 +612,9 @@ class RandomHorizontalFlipWithBBox(cde.RandomHorizontalFlipWithBBoxOp): |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlipWithBBox(0.70)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlipWithBBox(0.70)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_prob |
|
|
@check_prob |
|
|
@@ -646,10 +635,9 @@ class RandomPosterize(cde.RandomPosterizeOp): |
|
|
magnitude operation (default=(8, 8)). |
|
|
magnitude operation (default=(8, 8)). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomPosterize((6, 8))] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomPosterize((6, 8))] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_posterize |
|
|
@check_posterize |
|
|
@@ -668,10 +656,9 @@ class RandomVerticalFlip(cde.RandomVerticalFlipOp): |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomVerticalFlip(0.25)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomVerticalFlip(0.25)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_prob |
|
|
@check_prob |
|
|
@@ -688,10 +675,9 @@ class RandomVerticalFlipWithBBox(cde.RandomVerticalFlipWithBBoxOp): |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
prob (float, optional): Probability of the image being flipped (default=0.5). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomVerticalFlipWithBBox(0.20)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomVerticalFlipWithBBox(0.20)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_prob |
|
|
@check_prob |
|
|
@@ -711,15 +697,13 @@ class BoundingBoxAugment(cde.BoundingBoxAugmentOp): |
|
|
Range: [0, 1] (default=0.3). |
|
|
Range: [0, 1] (default=0.3). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # set bounding box operation with ratio of 1 to apply rotation on all bounding boxes |
|
|
>>> # set bounding box operation with ratio of 1 to apply rotation on all bounding boxes |
|
|
>>> bbox_aug_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1) |
|
|
>>> bbox_aug_op = c_vision.BoundingBoxAugment(c_vision.RandomRotation(90), 1) |
|
|
>>> # map to apply ops |
|
|
>>> # map to apply ops |
|
|
>>> data3 = data3.map(operations=[bbox_aug_op], |
|
|
|
|
|
>>> input_columns=["image", "bbox"], |
|
|
|
|
|
>>> output_columns=["image", "bbox"], |
|
|
|
|
|
>>> column_order=["image", "bbox"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=[bbox_aug_op], |
|
|
|
|
|
... input_columns=["image", "bbox"], |
|
|
|
|
|
... output_columns=["image", "bbox"], |
|
|
|
|
|
... column_order=["image", "bbox"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_bounding_box_augment_cpp |
|
|
@check_bounding_box_augment_cpp |
|
|
@@ -748,13 +732,12 @@ class Resize(cde.ResizeOp): |
|
|
- Inter.BICUBIC, means interpolation method is bicubic interpolation. |
|
|
- Inter.BICUBIC, means interpolation method is bicubic interpolation. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> resize_op = c_vision.Resize([100, 75], Inter.BICUBIC) |
|
|
>>> resize_op = c_vision.Resize([100, 75], Inter.BICUBIC) |
|
|
>>> transforms_list = [decode_op, resize_op] |
|
|
>>> transforms_list = [decode_op, resize_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_resize_interpolation |
|
|
@check_resize_interpolation |
|
|
@@ -802,13 +785,12 @@ class ResizeWithBBox(cde.ResizeWithBBoxOp): |
|
|
- Inter.BICUBIC, means interpolation method is bicubic interpolation. |
|
|
- Inter.BICUBIC, means interpolation method is bicubic interpolation. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> bbox_op = c_vision.ResizeWithBBox(50, Inter.NEAREST) |
|
|
>>> bbox_op = c_vision.ResizeWithBBox(50, Inter.NEAREST) |
|
|
>>> transforms_list = [decode_op, bbox_op] |
|
|
>>> transforms_list = [decode_op, bbox_op] |
|
|
>>> data3 = data3.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_resize_interpolation |
|
|
@check_resize_interpolation |
|
|
@@ -846,13 +828,12 @@ class RandomResizedCropWithBBox(cde.RandomCropAndResizeWithBBoxOp): |
|
|
crop area (default=10). If exceeded, fall back to use center crop instead. |
|
|
crop area (default=10). If exceeded, fall back to use center crop instead. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> bbox_op = c_vision.RandomResizedCropWithBBox(size=50, interpolation=Inter.NEAREST) |
|
|
>>> bbox_op = c_vision.RandomResizedCropWithBBox(size=50, interpolation=Inter.NEAREST) |
|
|
>>> transforms_list = [decode_op, bbox_op] |
|
|
>>> transforms_list = [decode_op, bbox_op] |
|
|
>>> data3 = data3.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_resize_crop |
|
|
@check_random_resize_crop |
|
|
@@ -894,14 +875,13 @@ class RandomResizedCrop(cde.RandomCropAndResizeOp): |
|
|
crop_area (default=10). If exceeded, fall back to use center_crop instead. |
|
|
crop_area (default=10). If exceeded, fall back to use center_crop instead. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> resize_crop_op = c_vision.RandomResizedCrop(size=(50, 75), scale=(0.25, 0.5), |
|
|
>>> resize_crop_op = c_vision.RandomResizedCrop(size=(50, 75), scale=(0.25, 0.5), |
|
|
>>> interpolation=Inter.BILINEAR) |
|
|
|
|
|
|
|
|
... interpolation=Inter.BILINEAR) |
|
|
>>> transforms_list = [decode_op, resize_crop_op] |
|
|
>>> transforms_list = [decode_op, resize_crop_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_resize_crop |
|
|
@check_random_resize_crop |
|
|
@@ -928,14 +908,14 @@ class CenterCrop(cde.CenterCropOp): |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # crop image to a square |
|
|
>>> # crop image to a square |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.CenterCrop(50)] |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.CenterCrop(50)] |
|
|
>>> data1 = data1.map(operations=transforms_list1, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
>>> # crop image to portrait style |
|
|
>>> # crop image to portrait style |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.CenterCrop((60, 40))] |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.CenterCrop((60, 40))] |
|
|
>>> data2 = data2.map(operations=transforms_list2, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list2, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_crop |
|
|
@check_crop |
|
|
@@ -957,10 +937,9 @@ class RandomColor(cde.RandomColorOp): |
|
|
single fixed magnitude operation (default=(0.1, 1.9)). |
|
|
single fixed magnitude operation (default=(0.1, 1.9)). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomColor((0.5, 2.0))] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomColor((0.5, 2.0))] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_positive_degrees |
|
|
@check_positive_degrees |
|
|
@@ -987,12 +966,13 @@ class RandomColorAdjust(cde.RandomColorAdjustOp): |
|
|
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5. |
|
|
If it is a sequence, it should be [min, max] where -0.5 <= min <= max <= 0.5. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> decode_op = c_vision.Decode() |
|
|
>>> transform_op = c_vision.RandomColorAdjust(brightness=(0.5, 1), contrast=(0.4, 1), saturation=(0.3, 1)) |
|
|
|
|
|
|
|
|
>>> transform_op = c_vision.RandomColorAdjust(brightness=(0.5, 1), |
|
|
|
|
|
... contrast=(0.4, 1), |
|
|
|
|
|
... saturation=(0.3, 1)) |
|
|
>>> transforms_list = [decode_op, transform_op] |
|
|
>>> transforms_list = [decode_op, transform_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_color_adjust |
|
|
@check_random_color_adjust |
|
|
@@ -1048,12 +1028,13 @@ class RandomRotation(cde.RandomRotationOp): |
|
|
If it is an integer, it is used for all RGB channels. |
|
|
If it is an integer, it is used for all RGB channels. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
>>> transforms_list = [c_vision.Decode(), |
|
|
>>> transforms_list = [c_vision.Decode(), |
|
|
>>> c_vision.RandomRotation(degrees=5.0, resample=Inter.NEAREST, expand=True)] |
|
|
|
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
... c_vision.RandomRotation(degrees=5.0, |
|
|
|
|
|
... resample=Inter.NEAREST, |
|
|
|
|
|
... expand=True)] |
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_rotation |
|
|
@check_random_rotation |
|
|
@@ -1082,10 +1063,9 @@ class Rescale(cde.RescaleOp): |
|
|
shift (float): Shift factor. |
|
|
shift (float): Shift factor. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Rescale(1.0 / 255.0, -1.0)] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Rescale(1.0 / 255.0, -1.0)] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_rescale |
|
|
@check_rescale |
|
|
@@ -1122,14 +1102,14 @@ class RandomResize(cde.RandomResizeOp): |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # randomly resize image, keeping aspect ratio |
|
|
>>> # randomly resize image, keeping aspect ratio |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.RandomResize(50)] |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.RandomResize(50)] |
|
|
>>> data1 = data1.map(operations=transforms_list1, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
>>> # randomly resize image to landscape style |
|
|
>>> # randomly resize image to landscape style |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.RandomResize((40, 60))] |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.RandomResize((40, 60))] |
|
|
>>> data2 = data2.map(operations=transforms_list2, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list2, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_resize |
|
|
@check_resize |
|
|
@@ -1152,14 +1132,14 @@ class RandomResizeWithBBox(cde.RandomResizeWithBBoxOp): |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # randomly resize image with bounding boxes, keeping aspect ratio |
|
|
>>> # randomly resize image with bounding boxes, keeping aspect ratio |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.RandomResizeWithBBox(60)] |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.RandomResizeWithBBox(60)] |
|
|
>>> data1 = data1.map(operations=transforms_list1, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
>>> # randomly resize image with bounding boxes to portrait style |
|
|
>>> # randomly resize image with bounding boxes to portrait style |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.RandomResizeWithBBox((80, 60))] |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.RandomResizeWithBBox((80, 60))] |
|
|
>>> data2 = data2.map(operations=transforms_list2, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list2, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_resize |
|
|
@check_resize |
|
|
@@ -1175,11 +1155,12 @@ class HWC2CHW(cde.ChannelSwapOp): |
|
|
Transpose the input image; shape (H, W, C) to shape (C, H, W). |
|
|
Transpose the input image; shape (H, W, C) to shape (C, H, W). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomHorizontalFlip(0.75), c_vision.RandomCrop(512), |
|
|
|
|
|
>>> c_vision.HWC2CHW()] |
|
|
|
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), |
|
|
|
|
|
... c_vision.RandomHorizontalFlip(0.75), |
|
|
|
|
|
... c_vision.RandomCrop(512), |
|
|
|
|
|
... c_vision.HWC2CHW()] |
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
def __call__(self, img): |
|
|
def __call__(self, img): |
|
|
@@ -1224,13 +1205,14 @@ class RandomCropDecodeResize(cde.RandomCropDecodeResizeOp): |
|
|
If exceeded, fall back to use center_crop instead. |
|
|
If exceeded, fall back to use center_crop instead. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Inter |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> resize_crop_decode_op = c_vision.RandomCropDecodeResize(size=(50, 75), scale=(0.25, 0.5), |
|
|
|
|
|
>>> interpolation=Inter.NEAREST, max_attempts=5) |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Inter |
|
|
|
|
|
>>> resize_crop_decode_op = c_vision.RandomCropDecodeResize(size=(50, 75), |
|
|
|
|
|
... scale=(0.25, 0.5), |
|
|
|
|
|
... interpolation=Inter.NEAREST, |
|
|
|
|
|
... max_attempts=5) |
|
|
>>> transforms_list = [resize_crop_decode_op] |
|
|
>>> transforms_list = [resize_crop_decode_op] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_resize_crop |
|
|
@check_random_resize_crop |
|
|
@@ -1277,11 +1259,10 @@ class Pad(cde.PadOp): |
|
|
value of edge. |
|
|
value of edge. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> from mindspore.dataset.transforms.vision import Border |
|
|
|
|
|
>>> |
|
|
|
|
|
|
|
|
>>> from mindspore.dataset.vision import Border |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Pad([100, 100, 100, 100])] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.Pad([100, 100, 100, 100])] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_pad |
|
|
@check_pad |
|
|
@@ -1321,18 +1302,17 @@ class UniformAugment(cde.UniformAugOp): |
|
|
num_ops (int, optional): Number of operations to be selected and applied (default=2). |
|
|
num_ops (int, optional): Number of operations to be selected and applied (default=2). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> import mindspore.dataset.vision.py_transforms as py_vision |
|
|
>>> import mindspore.dataset.vision.py_transforms as py_vision |
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.RandomHorizontalFlip(), |
|
|
>>> transforms_list = [c_vision.RandomHorizontalFlip(), |
|
|
>>> c_vision.RandomVerticalFlip(), |
|
|
|
|
|
>>> c_vision.RandomColorAdjust(), |
|
|
|
|
|
>>> c_vision.RandomRotation(degrees=45)] |
|
|
|
|
|
|
|
|
... c_vision.RandomVerticalFlip(), |
|
|
|
|
|
... c_vision.RandomColorAdjust(), |
|
|
|
|
|
... c_vision.RandomRotation(degrees=45)] |
|
|
>>> uni_aug_op = c_vision.UniformAugment(transforms=transforms_list, num_ops=2) |
|
|
>>> uni_aug_op = c_vision.UniformAugment(transforms=transforms_list, num_ops=2) |
|
|
>>> transforms_all = [c_vision.Decode(), c_vision.Resize(size=[224, 224]), |
|
|
>>> transforms_all = [c_vision.Decode(), c_vision.Resize(size=[224, 224]), |
|
|
>>> uni_aug_op, py_vision.ToTensor()] |
|
|
|
|
|
>>> data_aug = data1.map(operations=transforms_all, input_columns="image", |
|
|
|
|
|
>>> num_parallel_workers=1) |
|
|
|
|
|
|
|
|
... uni_aug_op, py_vision.ToTensor()] |
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset.map(operations=transforms_all, |
|
|
|
|
|
... input_columns="image", |
|
|
|
|
|
... num_parallel_workers=1) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_uniform_augment_cpp |
|
|
@check_uniform_augment_cpp |
|
|
@@ -1352,12 +1332,13 @@ class RandomSelectSubpolicy(cde.RandomSelectSubpolicyOp): |
|
|
policy (list(list(tuple(TensorOp,float))): List of sub-policies to choose from. |
|
|
policy (list(list(tuple(TensorOp,float))): List of sub-policies to choose from. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> policy = [[(c_vision.RandomRotation((45, 45)), 0.5), (c_vision.RandomVerticalFlip(), 1), |
|
|
|
|
|
>>> (c_vision.RandomColorAdjust(), 0.8)], |
|
|
|
|
|
>>> [(c_vision.RandomRotation((90, 90)), 1), (c_vision.RandomColorAdjust(), 0.2)]] |
|
|
|
|
|
>>> data_policy = data1.map(operations=c_vision.RandomSelectSubpolicy(policy), input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> policy = [[(c_vision.RandomRotation((45, 45)), 0.5), |
|
|
|
|
|
... (c_vision.RandomVerticalFlip(), 1), |
|
|
|
|
|
... (c_vision.RandomColorAdjust(), 0.8)], |
|
|
|
|
|
... [(c_vision.RandomRotation((90, 90)), 1), |
|
|
|
|
|
... (c_vision.RandomColorAdjust(), 0.2)]] |
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset.map(operations=c_vision.RandomSelectSubpolicy(policy), |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_select_subpolicy_op |
|
|
@check_random_select_subpolicy_op |
|
|
@@ -1385,14 +1366,14 @@ class SoftDvppDecodeResizeJpeg(cde.SoftDvppDecodeResizeJpegOp): |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
If size is a sequence of length 2, it should be (height, width). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # decode and resize image, keeping aspect ratio |
|
|
>>> # decode and resize image, keeping aspect ratio |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.SoftDvppDecodeResizeJpeg(70)] |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.SoftDvppDecodeResizeJpeg(70)] |
|
|
>>> data1 = data1.map(operations=transforms_list1, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
>>> # decode and resize to portrait style |
|
|
>>> # decode and resize to portrait style |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.SoftDvppDecodeResizeJpeg((80, 60))] |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.SoftDvppDecodeResizeJpeg((80, 60))] |
|
|
>>> data2 = data2.map(operations=transforms_list2, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list2, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_resize |
|
|
@check_resize |
|
|
@@ -1425,14 +1406,14 @@ class SoftDvppDecodeRandomCropResizeJpeg(cde.SoftDvppDecodeRandomCropResizeJpegO |
|
|
If exceeded, fall back to use center_crop instead. |
|
|
If exceeded, fall back to use center_crop instead. |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> # decode, randomly crop and resize image, keeping aspect ratio |
|
|
>>> # decode, randomly crop and resize image, keeping aspect ratio |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.SoftDvppDecodeRandomCropResizeJpeg(90)] |
|
|
>>> transforms_list1 = [c_vision.Decode(), c_vision.SoftDvppDecodeRandomCropResizeJpeg(90)] |
|
|
>>> data1 = data1.map(operations=transforms_list1, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list1, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
>>> # decode, randomly crop and resize to landscape style |
|
|
>>> # decode, randomly crop and resize to landscape style |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.SoftDvppDecodeRandomCropResizeJpeg((80, 100))] |
|
|
>>> transforms_list2 = [c_vision.Decode(), c_vision.SoftDvppDecodeRandomCropResizeJpeg((80, 100))] |
|
|
>>> data2 = data2.map(operations=transforms_list2, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset_1 = image_folder_dataset_1.map(operations=transforms_list2, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_soft_dvpp_decode_random_crop_resize_jpeg |
|
|
@check_soft_dvpp_decode_random_crop_resize_jpeg |
|
|
@@ -1456,10 +1437,9 @@ class RandomSolarize(cde.RandomSolarizeOp): |
|
|
be in (min, max) format. If min=max, then it is a single fixed magnitude operation (default=(0, 255)). |
|
|
be in (min, max) format. If min=max, then it is a single fixed magnitude operation (default=(0, 255)). |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> import mindspore.dataset.vision.c_transforms as c_vision |
|
|
|
|
|
>>> |
|
|
|
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomSolarize(threshold=(10,100))] |
|
|
>>> transforms_list = [c_vision.Decode(), c_vision.RandomSolarize(threshold=(10,100))] |
|
|
>>> data1 = data1.map(operations=transforms_list, input_columns=["image"]) |
|
|
|
|
|
|
|
|
>>> image_folder_dataset = image_folder_dataset.map(operations=transforms_list, |
|
|
|
|
|
... input_columns=["image"]) |
|
|
""" |
|
|
""" |
|
|
|
|
|
|
|
|
@check_random_solarize |
|
|
@check_random_solarize |
|
|
|