Merge pull request !1487 from sunsuodong/addntags/v0.5.0-beta
| @@ -85,7 +85,7 @@ bool IsInputFormatDtypeMatched(const KernelAttr &kernel_attr, const std::vector< | |||
| const std::vector<TypeId> &input_types, | |||
| const std::vector<size_t> &input_not_cnode_indexes) { | |||
| if (kernel_attr.GetInputSize() != input_types.size()) { | |||
| MS_LOG(ERROR) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size(); | |||
| MS_LOG(DEBUG) << "required input num:" << kernel_attr.GetInputSize() << ", actual input num:" << input_types.size(); | |||
| return false; | |||
| } | |||
| auto input_num = input_types.size(); | |||
| @@ -0,0 +1,66 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/cpu/addn_cpu_kernel.h" | |||
| #include "device/cpu/cpu_device_address.h" | |||
| #include "ir/primitive.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void AddNCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| input_num_ = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| output_shape_ = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| CPUKernelUtils::ExpandDimsTo4(&output_shape_); | |||
| } | |||
| bool AddNCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| auto output_addr = reinterpret_cast<float *>(outputs[0]->addr); | |||
| for (size_t i = 0; i < output_shape_[0]; ++i) { | |||
| for (size_t j = 0; j < output_shape_[1]; ++j) { | |||
| for (size_t k = 0; k < output_shape_[2]; ++k) { | |||
| for (size_t m = 0; m < output_shape_[3]; ++m) { | |||
| auto offset = CPUKernelUtils::CalcOffset(output_shape_, i, j, k, m); | |||
| float sum = 0; | |||
| for (size_t index = 0; index < input_num_; ++index) { | |||
| auto input_addr = reinterpret_cast<float *>(inputs[index]->addr); | |||
| sum += input_addr[offset]; | |||
| } | |||
| output_addr[offset] = sum; | |||
| } | |||
| } | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| void AddNCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| if (input_shape.size() > 4) { | |||
| MS_LOG(EXCEPTION) << "Input dims is " << input_shape.size() << ", but AddNCPUKernel olny support 4d or lower."; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but AddNCPUKernel needs 1 output."; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,56 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include "kernel/cpu/cpu_kernel.h" | |||
| #include "kernel/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class AddNCPUKernel : public CPUKernel { | |||
| public: | |||
| AddNCPUKernel() : input_num_(0) {} | |||
| ~AddNCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| size_t input_num_; | |||
| std::vector<size_t> output_shape_; | |||
| }; | |||
| MS_REG_CPU_KERNEL( | |||
| AddN, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| AddNCPUKernel); | |||
| MS_REG_CPU_KERNEL(AddN, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| AddNCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_CPU_ADDN_CPU_KERNEL_H_ | |||
| @@ -42,7 +42,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na | |||
| MS_EXCEPTION_IF_NULL(kernel_info); | |||
| const KernelBuildInfo *kernel_build_Info = kernel_info->select_kernel_build_info(); | |||
| MS_EXCEPTION_IF_NULL(kernel_build_Info); | |||
| std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, kernel_build_Info); | |||
| std::pair<bool, size_t> ret_pair = CPUKernelAttrCheck(kernel_name, *kernel_build_Info); | |||
| if (ret_pair.first) { | |||
| return (name_to_attr_creator_.find(kernel_name)->second)[ret_pair.second].second(); | |||
| } | |||
| @@ -50,7 +50,7 @@ std::shared_ptr<CPUKernel> CPUKernelFactory::Create(const std::string &kernel_na | |||
| } | |||
| std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string &kernel_name, | |||
| const KernelBuildInfo *kernel_info) { | |||
| const KernelBuildInfo &kernel_info) { | |||
| auto iter = name_to_attr_creator_.find(kernel_name); | |||
| if (iter == name_to_attr_creator_.end()) { | |||
| MS_LOG(INFO) << "Not registered CPU kernel: op[" << kernel_name << "]!"; | |||
| @@ -59,27 +59,34 @@ std::pair<bool, size_t> CPUKernelFactory::CPUKernelAttrCheck(const std::string & | |||
| auto creators = iter->second; | |||
| for (size_t index = 0; index < creators.size(); ++index) { | |||
| auto attr_creator = creators[index]; | |||
| for (size_t i = 0; i < kernel_info->GetInputNum(); ++i) { | |||
| if (kernel_info->GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) { | |||
| MS_LOG(WARNING) << "cpu kernel attr check failed. input index: " << i << "."; | |||
| MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetInputDeviceType(i) << ", " | |||
| << "register type:" << attr_creator.first.GetInputAttr(i).first; | |||
| return std::make_pair(false, 0); | |||
| } | |||
| if (CPUKernelSingleAttrCheck(attr_creator, kernel_info)) { | |||
| return std::make_pair(true, index); | |||
| } | |||
| for (size_t i = 0; i < kernel_info->GetOutputNum(); ++i) { | |||
| if (kernel_info->GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) { | |||
| MS_LOG(WARNING) << "cpu kernel attr check failed. output index: " << i << "."; | |||
| MS_LOG(WARNING) << "kernel info type:" << kernel_info->GetOutputDeviceType(i) << ", " | |||
| << "register type:" << attr_creator.first.GetOutputAttr(i).first; | |||
| return std::make_pair(false, 0); | |||
| } | |||
| } | |||
| return std::make_pair(true, index); | |||
| } | |||
| return std::make_pair(false, 0); | |||
| } | |||
| bool CPUKernelFactory::CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator, | |||
| const KernelBuildInfo &kernel_info) { | |||
| for (size_t i = 0; i < kernel_info.GetInputNum(); ++i) { | |||
| if (kernel_info.GetInputDeviceType(i) != attr_creator.first.GetInputAttr(i).first) { | |||
| MS_LOG(DEBUG) << "cpu kernel attr check failed. input index: " << i << "."; | |||
| MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetInputDeviceType(i) << ", " | |||
| << "register type:" << attr_creator.first.GetInputAttr(i).first; | |||
| return false; | |||
| } | |||
| } | |||
| for (size_t i = 0; i < kernel_info.GetOutputNum(); ++i) { | |||
| if (kernel_info.GetOutputDeviceType(i) != attr_creator.first.GetOutputAttr(i).first) { | |||
| MS_LOG(DEBUG) << "cpu kernel attr check failed. output index: " << i << "."; | |||
| MS_LOG(DEBUG) << "kernel info type:" << kernel_info.GetOutputDeviceType(i) << ", " | |||
| << "register type:" << attr_creator.first.GetOutputAttr(i).first; | |||
| return false; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| std::vector<KernelAttr> CPUKernelFactory::GetSupportedKernelAttrList(const std::string &kernel_name) { | |||
| std::vector<KernelAttr> result; | |||
| auto iter = name_to_attr_creator_.find(kernel_name); | |||
| @@ -43,7 +43,9 @@ class CPUKernelFactory { | |||
| CPUKernelFactory() = default; | |||
| ~CPUKernelFactory() = default; | |||
| DISABLE_COPY_AND_ASSIGN(CPUKernelFactory) | |||
| std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo *kernel_info); | |||
| std::pair<bool, size_t> CPUKernelAttrCheck(const std::string &kernel_name, const KernelBuildInfo &kernel_info); | |||
| bool CPUKernelSingleAttrCheck(const std::pair<KernelAttr, CPUKernelCreator> &attr_creator, | |||
| const KernelBuildInfo &kernel_info); | |||
| std::map<std::string, std::vector<std::pair<KernelAttr, CPUKernelCreator>>> name_to_attr_creator_; | |||
| }; | |||
| @@ -0,0 +1,78 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | |||
| class Net2I(nn.Cell): | |||
| def __init__(self): | |||
| super(Net2I, self).__init__() | |||
| self.addn = P.AddN() | |||
| def construct(self, x, y): | |||
| return self.addn((x, y)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_net_2Input(): | |||
| x = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32) | |||
| y = np.arange(2 * 3 * 2).reshape(2, 3, 2).astype(np.float32) | |||
| addn = Net2I() | |||
| output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32)) | |||
| print("output:\n", output) | |||
| expect_result = [[[0., 2.], | |||
| [4., 6.], | |||
| [8., 10.]], | |||
| [[12., 14.], | |||
| [16., 18.], | |||
| [20., 22.]]] | |||
| assert (output.asnumpy() == expect_result).all() | |||
| class Net3I(nn.Cell): | |||
| def __init__(self): | |||
| super(Net3I, self).__init__() | |||
| self.addn = P.AddN() | |||
| def construct(self, x, y, z): | |||
| return self.addn((x, y, z)) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_net_3Input(): | |||
| x = np.arange(2 * 3).reshape(2, 3).astype(np.float32) | |||
| y = np.arange(2 * 3).reshape(2, 3).astype(np.float32) | |||
| z = np.arange(2 * 3).reshape(2, 3).astype(np.float32) | |||
| addn = Net3I() | |||
| output = addn(Tensor(x, mstype.float32), Tensor(y, mstype.float32), Tensor(z, mstype.float32)) | |||
| print("output:\n", output) | |||
| expect_result = [[0., 3., 6.], | |||
| [9., 12., 15]] | |||
| assert (output.asnumpy() == expect_result).all() | |||
| if __name__ == '__main__': | |||
| test_net_2Input() | |||
| test_net_3Input() | |||
| @@ -1,4 +1,4 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||