Merge pull request !4654 from gongdaguo/ReviewBotChecktags/v0.7.0-beta
| @@ -122,7 +122,6 @@ int DeConv2D::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vecto | |||||
| pad_d_ = GetPadDown(); | pad_d_ = GetPadDown(); | ||||
| pad_r_ = GetPadRight(); | pad_r_ = GetPadRight(); | ||||
| auto pad_mode = (schema::PadMode)GetPadMode(); | auto pad_mode = (schema::PadMode)GetPadMode(); | ||||
| if (pad_mode == schema::PadMode_CAFFE) { | if (pad_mode == schema::PadMode_CAFFE) { | ||||
| output_h = (input_h - 1) * stride_h + ((kernel_h - 1) * dilate_h + 1) - pad_u_ - pad_d_; | output_h = (input_h - 1) * stride_h + ((kernel_h - 1) * dilate_h + 1) - pad_u_ - pad_d_; | ||||
| output_w = (input_w - 1) * stride_w + ((kernel_w - 1) * dilate_w + 1) - pad_l_ - pad_r_; | output_w = (input_w - 1) * stride_w + ((kernel_w - 1) * dilate_w + 1) - pad_l_ - pad_r_; | ||||
| @@ -58,5 +58,4 @@ int ScatterND::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vect | |||||
| return 0; | return 0; | ||||
| } | } | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -20,7 +20,6 @@ namespace mindspore { | |||||
| namespace { | namespace { | ||||
| constexpr int kShapeInputNum = 1; | constexpr int kShapeInputNum = 1; | ||||
| constexpr int kShapeOutputNum = 1; | constexpr int kShapeOutputNum = 1; | ||||
| } // namespace | } // namespace | ||||
| int Shape::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vector<lite::tensor::Tensor *> outputs_) { | int Shape::InferShape(std::vector<lite::tensor::Tensor *> inputs_, std::vector<lite::tensor::Tensor *> outputs_) { | ||||
| if (inputs_.size() != kShapeInputNum) { | if (inputs_.size() != kShapeInputNum) { | ||||
| @@ -161,6 +161,5 @@ void CompareOutput(float *output_data, std::string file_path) { | |||||
| // } | // } | ||||
| // return "/data/data/" + packageName + '/'; | // return "/data/data/" + packageName + '/'; | ||||
| //} | //} | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -22,7 +22,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| int CompareRelativeOutput(float *output_data, std::string file_path); | int CompareRelativeOutput(float *output_data, std::string file_path); | ||||
| } | } | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| #endif // MINDSPORE_LITE_COMMON_FILE_UTILS_EXT_H_ | #endif // MINDSPORE_LITE_COMMON_FILE_UTILS_EXT_H_ | ||||
| @@ -75,7 +75,6 @@ std::vector<size_t> GetGraphOutputNodes(const schema::MetaGraph *meta_graph) { | |||||
| // std::unordered_set<NODE_ID> OpNode::GetAllInEdges() { return inEdges; } | // std::unordered_set<NODE_ID> OpNode::GetAllInEdges() { return inEdges; } | ||||
| // | // | ||||
| // std::unordered_set<NODE_ID> OpNode::GetAllOutEdges() { return outEdges; } | // std::unordered_set<NODE_ID> OpNode::GetAllOutEdges() { return outEdges; } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -82,7 +82,6 @@ int OpGraph<NODE_T>::Build(const schema::MetaGraph *subGraphDef) { | |||||
| return RET_ERROR; | return RET_ERROR; | ||||
| } | } | ||||
| auto opDefs = subGraphDef->nodes(); | auto opDefs = subGraphDef->nodes(); | ||||
| uint32_t opCount = opDefs->size(); | uint32_t opCount = opDefs->size(); | ||||
| @@ -104,7 +103,7 @@ int OpGraph<NODE_T>::Build(const schema::MetaGraph *subGraphDef) { | |||||
| } | } | ||||
| template <typename NODE_T> | template <typename NODE_T> | ||||
| int OpGraph<NODE_T>::AddEdge(const schema::CNode *srcNodeDef, | int OpGraph<NODE_T>::AddEdge(const schema::CNode *srcNodeDef, | ||||
| const flatbuffers::Vector<flatbuffers::Offset<schema::CNode>> *nodeDefs) { | |||||
| const flatbuffers::Vector<flatbuffers::Offset<schema::CNode>> *nodeDefs) { | |||||
| MS_ASSERT(srcNodeDef != nullptr); | MS_ASSERT(srcNodeDef != nullptr); | ||||
| MS_ASSERT(nodeDefs != nullptr); | MS_ASSERT(nodeDefs != nullptr); | ||||
| NODE_ID srcId = std::string(srcNodeDef->name()->c_str()); | NODE_ID srcId = std::string(srcNodeDef->name()->c_str()); | ||||
| @@ -242,7 +241,6 @@ OpGraph<NODE_T>::~OpGraph() { | |||||
| } | } | ||||
| nodes.clear(); | nodes.clear(); | ||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -146,6 +146,5 @@ std::vector<AnfNodePtr> DeepUsedGraphSearch(const AnfNodePtr &root, const Includ | |||||
| std::vector<AnfNodePtr> DeepLinkedGraphSearch(const AnfNodePtr &root, const IncludeFunc &include) { | std::vector<AnfNodePtr> DeepLinkedGraphSearch(const AnfNodePtr &root, const IncludeFunc &include) { | ||||
| return DeepLinkedGraphSearcher(include).Search(root); | return DeepLinkedGraphSearcher(include).Search(root); | ||||
| } | } | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -118,7 +118,7 @@ if (IsPrint(log_level_)) { | |||||
| // #ifdef USE_ANDROID_LOG | // #ifdef USE_ANDROID_LOG | ||||
| #ifdef ENABLE_ARM | #ifdef ENABLE_ARM | ||||
| __android_log_print(GetAndroidLogLevel(log_level_), ANDROID_LOG_TAG, "[%s:%d] %s] %s", location_.file_, | __android_log_print(GetAndroidLogLevel(log_level_), ANDROID_LOG_TAG, "[%s:%d] %s] %s", location_.file_, | ||||
| location_.line_, location_.func_, msg.str().c_str()); | |||||
| location_.line_, location_.func_, msg.str().c_str()); | |||||
| #else | #else | ||||
| printf("%s [%s:%d] %s] %s\n:", EnumStrForMsLogLevel(log_level_), location_.file_, location_.line_, location_.func_, | printf("%s [%s:%d] %s] %s\n:", EnumStrForMsLogLevel(log_level_), location_.file_, location_.line_, location_.func_, | ||||
| msg.str().c_str()); | msg.str().c_str()); | ||||
| @@ -29,7 +29,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| namespace tensor { | namespace tensor { | ||||
| struct QuantArg { | struct QuantArg { | ||||
| double scale; | double scale; | ||||
| int32_t zeroPoint; | int32_t zeroPoint; | ||||
| @@ -362,5 +362,4 @@ session::LiteSession *session::LiteSession::CreateSession(lite::Context *context | |||||
| } | } | ||||
| return session; | return session; | ||||
| } | } | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -33,7 +33,4 @@ void MatrixMultiplyFp16(const float16_t *matrix_a, const float16_t *matrix_b, fl | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } // namespace mindspore::kernel | } // namespace mindspore::kernel | ||||
| @@ -20,7 +20,7 @@ | |||||
| #include "nnacl/errorcode.h" | #include "nnacl/errorcode.h" | ||||
| int DoSplitFp16(float16_t *in_data, float16_t **out_data, const int *input_shape, int offset, int num_unit, | int DoSplitFp16(float16_t *in_data, float16_t **out_data, const int *input_shape, int offset, int num_unit, | ||||
| SplitParameter *split_param) { | |||||
| SplitParameter *split_param) { | |||||
| if (in_data == NULL || out_data == NULL) { | if (in_data == NULL || out_data == NULL) { | ||||
| return NNACL_ERR; | return NNACL_ERR; | ||||
| } | } | ||||
| @@ -25,7 +25,7 @@ | |||||
| extern "C" { | extern "C" { | ||||
| #endif | #endif | ||||
| int DoSplitFp16(float16_t *in_data, float16_t **out_data, const int *input_shape, int offset, int num_unit, | int DoSplitFp16(float16_t *in_data, float16_t **out_data, const int *input_shape, int offset, int num_unit, | ||||
| SplitParameter *split_param); | |||||
| SplitParameter *split_param); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| } | } | ||||
| #endif | #endif | ||||
| @@ -36,7 +36,7 @@ int32x4_t ClacScaledInput(int32x4_t input, int32x4_t left_shift_result_vec, int3 | |||||
| } | } | ||||
| int16x4_t AddClacSumHalfWord(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | int16x4_t AddClacSumHalfWord(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | ||||
| int32x4_t output_multiplier_vec, AddQuantParameter *para) { | |||||
| int32x4_t output_multiplier_vec, AddQuantParameter *para) { | |||||
| int32x4_t raw_sum = vaddq_s32(scaled_input0, scaled_input1); | int32x4_t raw_sum = vaddq_s32(scaled_input0, scaled_input1); | ||||
| raw_sum = RoundingDivideByPOTInt32x4(vqrdmulhq_s32(vmulq_s32(raw_sum, left_shift_out_vec), output_multiplier_vec), | raw_sum = RoundingDivideByPOTInt32x4(vqrdmulhq_s32(vmulq_s32(raw_sum, left_shift_out_vec), output_multiplier_vec), | ||||
| @@ -25,7 +25,7 @@ | |||||
| #ifdef ENABLE_NEON | #ifdef ENABLE_NEON | ||||
| int16x4_t ClacSumHalfWordMul(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | int16x4_t ClacSumHalfWordMul(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | ||||
| int32x4_t output_multiplier_vec, MulQuantArg para) { | |||||
| int32x4_t output_multiplier_vec, MulQuantArg para) { | |||||
| int32x4_t input_scale = vmulq_s32(scaled_input0, scaled_input1); | int32x4_t input_scale = vmulq_s32(scaled_input0, scaled_input1); | ||||
| int32x4_t raw_sum = RoundingDivideByPOTInt32x4( | int32x4_t raw_sum = RoundingDivideByPOTInt32x4( | ||||
| SaturatingRoundingDoublingHighMulInt32x4(vmulq_s32(input_scale, left_shift_out_vec), output_multiplier_vec), | SaturatingRoundingDoublingHighMulInt32x4(vmulq_s32(input_scale, left_shift_out_vec), output_multiplier_vec), | ||||
| @@ -19,7 +19,7 @@ | |||||
| #include "nnacl/errorcode.h" | #include "nnacl/errorcode.h" | ||||
| int PadConstant4D(const int8_t *in_data, int8_t *out_data, const int32_t *in_dims, const int32_t *out_dims, | int PadConstant4D(const int8_t *in_data, int8_t *out_data, const int32_t *in_dims, const int32_t *out_dims, | ||||
| const int32_t *paddings, const int tid, const int thread_num) { | |||||
| const int32_t *paddings, const int tid, const int thread_num) { | |||||
| int32_t copy_size = in_dims[3]; | int32_t copy_size = in_dims[3]; | ||||
| for (int n = 0; n < in_dims[0]; n++) { | for (int n = 0; n < in_dims[0]; n++) { | ||||
| for (int h = tid; h < in_dims[1]; h += thread_num) { | for (int h = tid; h < in_dims[1]; h += thread_num) { | ||||
| @@ -25,7 +25,7 @@ | |||||
| extern "C" { | extern "C" { | ||||
| #endif | #endif | ||||
| int PadConstant4D(const int8_t *in_data, int8_t *out_data, const int32_t *in_dims, const int32_t *out_dims, | int PadConstant4D(const int8_t *in_data, int8_t *out_data, const int32_t *in_dims, const int32_t *out_dims, | ||||
| const int32_t *paddings, const int tid, const int thread_num); | |||||
| const int32_t *paddings, const int tid, const int thread_num); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| } | } | ||||
| #endif | #endif | ||||
| @@ -99,9 +99,9 @@ int SliceInt8(const int8_t *input, int8_t *output, SliceParameter *param) { | |||||
| multiplier = input_scale / output_scale; | multiplier = input_scale / output_scale; | ||||
| } | } | ||||
| for (n = 0; n< param->size_[0]; ++n) { | |||||
| for (n = 0; n < param->size_[0]; ++n) { | |||||
| size_t out_offset0 = n * out_stride0; | size_t out_offset0 = n * out_stride0; | ||||
| size_t in_offset0 = (n+ param->begin_[0]) * in_stride0 + param->begin_[3]; | |||||
| size_t in_offset0 = (n + param->begin_[0]) * in_stride0 + param->begin_[3]; | |||||
| for (h = 0; h < count_per_thread; ++h) { | for (h = 0; h < count_per_thread; ++h) { | ||||
| size_t k = h + thread_stride; | size_t k = h + thread_stride; | ||||
| if (k >= out_dim1) { | if (k >= out_dim1) { | ||||
| @@ -22,8 +22,8 @@ | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| extern "C" { | extern "C" { | ||||
| #endif | #endif | ||||
| int SliceInt8NoParallel(const int8_t*input, int8_t *output, SliceParameter *param); | |||||
| int SliceInt8(const int8_t*input, int8_t *output, SliceParameter *param); | |||||
| int SliceInt8NoParallel(const int8_t *input, int8_t *output, SliceParameter *param); | |||||
| int SliceInt8(const int8_t *input, int8_t *output, SliceParameter *param); | |||||
| #ifdef __cplusplus | #ifdef __cplusplus | ||||
| } | } | ||||
| #endif | #endif | ||||
| @@ -24,7 +24,7 @@ | |||||
| #ifdef ENABLE_NEON | #ifdef ENABLE_NEON | ||||
| int16x4_t DoClacSumHalfWord(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | int16x4_t DoClacSumHalfWord(int32x4_t scaled_input0, int32x4_t scaled_input1, int32x4_t left_shift_out_vec, | ||||
| int32x4_t output_multiplier_vec, SubQuantArg *para) { | |||||
| int32x4_t output_multiplier_vec, SubQuantArg *para) { | |||||
| int32x4_t raw_data = vsubq_s32(scaled_input0, scaled_input1); | int32x4_t raw_data = vsubq_s32(scaled_input0, scaled_input1); | ||||
| raw_data = RoundingDivideByPOTInt32x4(vqrdmulhq_s32(vmulq_s32(raw_data, left_shift_out_vec), output_multiplier_vec), | raw_data = RoundingDivideByPOTInt32x4(vqrdmulhq_s32(vmulq_s32(raw_data, left_shift_out_vec), output_multiplier_vec), | ||||
| @@ -28,7 +28,7 @@ const int iMantissaBits = 31; | |||||
| void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantized_multiplier, | void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantized_multiplier, | ||||
| int *right_shift) { | |||||
| int *right_shift) { | |||||
| if (quantized_multiplier == NULL || right_shift == NULL) { | if (quantized_multiplier == NULL || right_shift == NULL) { | ||||
| return; | return; | ||||
| } | } | ||||
| @@ -38,7 +38,7 @@ void QuantizeMultiplierSmallerThanOne(double double_multiplier, int32_t *quantiz | |||||
| } | } | ||||
| void QuantizeRoundParameter(double double_multiplier, int32_t *quantized_multiplier, int *left_shift, | void QuantizeRoundParameter(double double_multiplier, int32_t *quantized_multiplier, int *left_shift, | ||||
| int *right_shift) { | |||||
| int *right_shift) { | |||||
| int shift; | int shift; | ||||
| QuantizeMultiplierSmallerThanOne(double_multiplier, quantized_multiplier, &shift); | QuantizeMultiplierSmallerThanOne(double_multiplier, quantized_multiplier, &shift); | ||||
| shift = -shift; | shift = -shift; | ||||
| @@ -56,7 +56,7 @@ uint8_t QuantizeToUint8(float real_value, float scale, int32_t zp) { return roun | |||||
| int32_t QuantizeToInt8(float real_value, float scale, int32_t zp) { return round(real_value / scale + zp); } | int32_t QuantizeToInt8(float real_value, float scale, int32_t zp) { return round(real_value / scale + zp); } | ||||
| void CalculateActivationRangeQuantized(bool is_relu, bool is_relu6, int32_t zp, float scale, int *mini, | void CalculateActivationRangeQuantized(bool is_relu, bool is_relu6, int32_t zp, float scale, int *mini, | ||||
| int *maxi) { | |||||
| int *maxi) { | |||||
| int32_t min = CHAR_MIN; | int32_t min = CHAR_MIN; | ||||
| int32_t max = CHAR_MAX; | int32_t max = CHAR_MAX; | ||||
| int32_t quantized_zero = QuantizeToInt8(0, scale, zp); | int32_t quantized_zero = QuantizeToInt8(0, scale, zp); | ||||
| @@ -1364,7 +1364,6 @@ void Conv3x3Uint8OutputUnit(const int32_t *gemm_out, const int32_t *bias_data, i | |||||
| } | } | ||||
| } | } | ||||
| } | } | ||||
| } else { | } else { | ||||
| for (int i = 0; i < C4NUM; i++) { | for (int i = 0; i < C4NUM; i++) { | ||||
| const int32_t *local_ptr = gemm_out + i; | const int32_t *local_ptr = gemm_out + i; | ||||
| @@ -21,7 +21,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace kernel { | namespace kernel { | ||||
| /** | /** | ||||
| * MindSpore to OpenCL channel order. | * MindSpore to OpenCL channel order. | ||||
| * @param num_channels | * @param num_channels | ||||
| @@ -37,7 +37,6 @@ kernel::LiteKernel *GetOpenCLKernel(const std::vector<tensor::Tensor *> &in_tens | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace kernel { | namespace kernel { | ||||
| std::vector<size_t> GetCommonGlobalSize(const std::vector<size_t> &local, const std::vector<size_t> &global) { | std::vector<size_t> GetCommonGlobalSize(const std::vector<size_t> &local, const std::vector<size_t> &global) { | ||||
| std::vector<size_t> result(3, 1); | std::vector<size_t> result(3, 1); | ||||
| for (int i = 0; i < 3; ++i) { | for (int i = 0; i < 3; ++i) { | ||||
| @@ -31,6 +31,5 @@ AnfNodePopulater *AnfNodePopulaterRegistry::GetNodePopulater(const std::string & | |||||
| void AnfNodePopulaterRegistry::SetNodePopulater(const std::string &name, AnfNodePopulater *populater) { | void AnfNodePopulaterRegistry::SetNodePopulater(const std::string &name, AnfNodePopulater *populater) { | ||||
| populaters[name] = populater; | populaters[name] = populater; | ||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -99,7 +99,6 @@ class OpGraphT : public OpGraph<OpNode> { | |||||
| int AddEdge(NODE_ID srcId, NODE_ID dstId); | int AddEdge(NODE_ID srcId, NODE_ID dstId); | ||||
| int AddEdge(const schema::CNodeT *srcNodeDef, const std::vector<std::unique_ptr<schema::CNodeT>> *nodeDefs); | int AddEdge(const schema::CNodeT *srcNodeDef, const std::vector<std::unique_ptr<schema::CNodeT>> *nodeDefs); | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -55,8 +55,8 @@ size_t GetRefCount(schema::MetaGraphT *graphT, uint32_t tensorIdx); | |||||
| std::unique_ptr<schema::QuantParamT> CopyQuantParamT(const std::unique_ptr<schema::QuantParamT> &srcQuantParam); | std::unique_ptr<schema::QuantParamT> CopyQuantParamT(const std::unique_ptr<schema::QuantParamT> &srcQuantParam); | ||||
| std::unique_ptr<schema::QuantParamT> \ | |||||
| CopyQuantParamArrayT(const std::unique_ptr<schema::QuantParamT> &srcQuantParamArray); | |||||
| std::unique_ptr<schema::QuantParamT> CopyQuantParamArrayT( | |||||
| const std::unique_ptr<schema::QuantParamT> &srcQuantParamArray); | |||||
| std::unique_ptr<schema::QuantParamT> GetInTensorQuantParamArray(const schema::MetaGraphT &graphT, size_t tensorIdx); | std::unique_ptr<schema::QuantParamT> GetInTensorQuantParamArray(const schema::MetaGraphT &graphT, size_t tensorIdx); | ||||
| @@ -20,7 +20,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS AddConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | STATUS AddConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | ||||
| STATUS AddConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | STATUS AddConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | ||||
| @@ -19,7 +19,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS ConcatV2ConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | STATUS ConcatV2ConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | ||||
| STATUS ConcatV2ConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | STATUS ConcatV2ConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | ||||
| @@ -20,7 +20,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS RsqrtConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | STATUS RsqrtConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | ||||
| STATUS RsqrtConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | STATUS RsqrtConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | ||||
| @@ -23,7 +23,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS SubConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | STATUS SubConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | ||||
| STATUS SubConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | STATUS SubConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | ||||
| @@ -20,7 +20,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS TransposeConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | STATUS TransposeConstFoldPass::Run(GraphNode *graphNode) { return ConstFoldPass::Run(graphNode); } | ||||
| STATUS TransposeConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | STATUS TransposeConstFoldPass::CreateOp(SubGraphDefT *subGraph, OpDefT *node) { | ||||
| @@ -187,5 +187,3 @@ STATUS FormatTransFusionPass::DoFusion(schema::MetaGraphT *graph, const std::str | |||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -24,7 +24,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class EltwiseFormatTransPass : public FormatTransPass { | class EltwiseFormatTransPass : public FormatTransPass { | ||||
| public: | public: | ||||
| EltwiseFormatTransPass() : FormatTransPass() {} | EltwiseFormatTransPass() : FormatTransPass() {} | ||||
| @@ -200,6 +200,5 @@ NodeIter FormatTransPass::InsertFormatTransNode(schema::MetaGraphT *graph, NodeI | |||||
| void FormatTransPass::SetQuantType(QuantType quantType) { this->quantType = quantType; } | void FormatTransPass::SetQuantType(QuantType quantType) { this->quantType = quantType; } | ||||
| void FormatTransPass::SetFmk(converter::FmkType fmkType) { this->fmkType = fmkType; } | void FormatTransPass::SetFmk(converter::FmkType fmkType) { this->fmkType = fmkType; } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -28,7 +28,6 @@ STATUS CaffeConcatParser::Parse(const caffe::LayerParameter &proto, | |||||
| op->name = proto.name(); | op->name = proto.name(); | ||||
| std::unique_ptr<schema::ConcatT> attr(new schema::ConcatT()); | std::unique_ptr<schema::ConcatT> attr(new schema::ConcatT()); | ||||
| const caffe::ConcatParameter concatParam = proto.concat_param(); | const caffe::ConcatParameter concatParam = proto.concat_param(); | ||||
| if (concatParam.has_axis() && concatParam.has_concat_dim()) { | if (concatParam.has_axis() && concatParam.has_concat_dim()) { | ||||
| // MS_LOGE("Concat param in caffe have concat_dim and axis simultaneously,return fail"); | // MS_LOGE("Concat param in caffe have concat_dim and axis simultaneously,return fail"); | ||||
| return RET_ERROR; | return RET_ERROR; | ||||
| @@ -37,7 +36,6 @@ STATUS CaffeConcatParser::Parse(const caffe::LayerParameter &proto, | |||||
| if (concatParam.has_concat_dim()) { | if (concatParam.has_concat_dim()) { | ||||
| // MS_LOGD("Concat dim , set axis:%d", concatParam.concat_dim()); | // MS_LOGD("Concat dim , set axis:%d", concatParam.concat_dim()); | ||||
| int32_t concat_dim_value = (int32_t)concatParam.concat_dim(); | int32_t concat_dim_value = (int32_t)concatParam.concat_dim(); | ||||
| if (concat_dim_value < 0) { | if (concat_dim_value < 0) { | ||||
| // MS_LOGE("concat_dim value in model is smaller than 0:%d", concat_dim_value); | // MS_LOGE("concat_dim value in model is smaller than 0:%d", concat_dim_value); | ||||
| return RET_ERROR; | return RET_ERROR; | ||||
| @@ -32,7 +32,6 @@ STATUS CaffeCropParser::Parse(const caffe::LayerParameter &proto, | |||||
| attr->offsets = offsets; | attr->offsets = offsets; | ||||
| } else { | } else { | ||||
| const caffe::CropParameter cropParam = proto.crop_param(); | const caffe::CropParameter cropParam = proto.crop_param(); | ||||
| if (cropParam.has_axis()) { | if (cropParam.has_axis()) { | ||||
| if (cropParam.axis() == -1) { | if (cropParam.axis() == -1) { | ||||
| // MS_LOGW("axis with -1 may lead to calculation errors when input less than 4 dims."); | // MS_LOGW("axis with -1 may lead to calculation errors when input less than 4 dims."); | ||||
| @@ -34,7 +34,6 @@ STATUS CaffeEltwiseParser::Parse(const caffe::LayerParameter &proto, const caffe | |||||
| } | } | ||||
| const caffe::EltwiseParameter eltwiseParam = proto.eltwise_param(); | const caffe::EltwiseParameter eltwiseParam = proto.eltwise_param(); | ||||
| if (eltwiseParam.coeff_size() != 0 && eltwiseParam.coeff_size() != proto.bottom_size()) { | if (eltwiseParam.coeff_size() != 0 && eltwiseParam.coeff_size() != proto.bottom_size()) { | ||||
| MS_LOG(ERROR) << "Coeff size(" << eltwiseParam.coeff_size() | MS_LOG(ERROR) << "Coeff size(" << eltwiseParam.coeff_size() | ||||
| << ") check fail, Eltwise Layer takes one coefficient per bottom blob."; | << ") check fail, Eltwise Layer takes one coefficient per bottom blob."; | ||||
| @@ -19,7 +19,7 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS CaffeFlattenParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, | STATUS CaffeFlattenParser::Parse(const caffe::LayerParameter &proto, const caffe::LayerParameter &weight, | ||||
| schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) { | |||||
| schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) { | |||||
| if (op == nullptr) { | if (op == nullptr) { | ||||
| // MS_LOG(ERROR) << "null pointer dereferencing."; | // MS_LOG(ERROR) << "null pointer dereferencing."; | ||||
| return RET_NULL_PTR; | return RET_NULL_PTR; | ||||
| @@ -23,7 +23,6 @@ STATUS CaffeInterpParser::Parse(const caffe::LayerParameter &proto, const caffe: | |||||
| schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) { | schema::CNodeT *op, std::vector<schema::TensorT *> *weightVec) { | ||||
| std::unique_ptr<schema::ResizeT> attr(new schema::ResizeT()); | std::unique_ptr<schema::ResizeT> attr(new schema::ResizeT()); | ||||
| const caffe::InterpParameter interpParam = proto.interp_param(); | const caffe::InterpParameter interpParam = proto.interp_param(); | ||||
| if (interpParam.has_height()) { | if (interpParam.has_height()) { | ||||
| int64_t height = interpParam.height(); | int64_t height = interpParam.height(); | ||||
| if (height < 0) { | if (height < 0) { | ||||
| @@ -27,7 +27,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class CaffeNodeParser { | class CaffeNodeParser { | ||||
| public: | public: | ||||
| explicit CaffeNodeParser(const std::string &nodeName) : name(nodeName) {} | explicit CaffeNodeParser(const std::string &nodeName) : name(nodeName) {} | ||||
| @@ -20,9 +20,9 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS CaffePermuteParser::Parse(const caffe::LayerParameter &proto, | STATUS CaffePermuteParser::Parse(const caffe::LayerParameter &proto, | ||||
| const caffe::LayerParameter &weight, | |||||
| schema::CNodeT *op, | |||||
| std::vector<schema::TensorT *> *weightVec) { | |||||
| const caffe::LayerParameter &weight, | |||||
| schema::CNodeT *op, | |||||
| std::vector<schema::TensorT *> *weightVec) { | |||||
| op->name = proto.name(); | op->name = proto.name(); | ||||
| std::unique_ptr<schema::TransposeT> attr(new schema::TransposeT()); | std::unique_ptr<schema::TransposeT> attr(new schema::TransposeT()); | ||||
| const caffe::PermuteParameter permuteParam = proto.permute_param(); | const caffe::PermuteParameter permuteParam = proto.permute_param(); | ||||
| @@ -25,7 +25,6 @@ STATUS CaffePReluParser::Parse(const caffe::LayerParameter &proto, | |||||
| std::vector<schema::TensorT *> *weightVec) { | std::vector<schema::TensorT *> *weightVec) { | ||||
| std::unique_ptr<schema::CaffePReLUT> attr(new schema::CaffePReLUT()); | std::unique_ptr<schema::CaffePReLUT> attr(new schema::CaffePReLUT()); | ||||
| const caffe::PReLUParameter pReluParam = proto.prelu_param(); | const caffe::PReLUParameter pReluParam = proto.prelu_param(); | ||||
| if (pReluParam.has_channel_shared()) { | if (pReluParam.has_channel_shared()) { | ||||
| attr->channelShared = pReluParam.channel_shared(); | attr->channelShared = pReluParam.channel_shared(); | ||||
| } else { | } else { | ||||
| @@ -27,7 +27,6 @@ STATUS CaffeReshapeParser::Parse(const caffe::LayerParameter &proto, | |||||
| attr->format = schema::Format_NCHW; | attr->format = schema::Format_NCHW; | ||||
| const caffe::ReshapeParameter reshapeParam = proto.reshape_param(); | const caffe::ReshapeParameter reshapeParam = proto.reshape_param(); | ||||
| if (!reshapeParam.has_shape()) { | if (!reshapeParam.has_shape()) { | ||||
| // MS_LOGE("Reshape has no shape info, ret fail"); | // MS_LOGE("Reshape has no shape info, ret fail"); | ||||
| return RET_ERROR; | return RET_ERROR; | ||||
| @@ -150,6 +150,5 @@ TfliteNodeRegister g_TfliteHardSwishParser("HardSwish", new TfliteHardSwishParse | |||||
| TfliteNodeRegister g_tfliteLogisticParser("Logistic", new TfliteLogisticParser()); | TfliteNodeRegister g_tfliteLogisticParser("Logistic", new TfliteLogisticParser()); | ||||
| TfliteNodeRegister g_tflitePreluParser("Prelu", new TflitePreluParser()); | TfliteNodeRegister g_tflitePreluParser("Prelu", new TflitePreluParser()); | ||||
| TfliteNodeRegister g_TfliteLeakyReluParser("LeakyRelu", new TfliteLeakyReluParser()); | TfliteNodeRegister g_TfliteLeakyReluParser("LeakyRelu", new TfliteLeakyReluParser()); | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -25,7 +25,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class TfliteActivationParser : public TfliteNodeParser { | class TfliteActivationParser : public TfliteNodeParser { | ||||
| public: | public: | ||||
| TfliteActivationParser() : TfliteNodeParser("node_name") {} | TfliteActivationParser() : TfliteNodeParser("node_name") {} | ||||
| @@ -89,7 +88,6 @@ class TfliteLeakyReluParser : public TfliteNodeParser { | |||||
| std::vector<schema::Format> *tensors_format, | std::vector<schema::Format> *tensors_format, | ||||
| std::map<int, int> *tensors_id_map) override; | std::map<int, int> *tensors_id_map) override; | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -311,7 +311,6 @@ TfliteNodeRegister g_tfliteGreaterEParser("Greater", new TfliteGreaterParser()); | |||||
| TfliteNodeRegister g_tfliteGreaterEqualParser("GreaterEqual", new TfliteGreaterEqualParser()); | TfliteNodeRegister g_tfliteGreaterEqualParser("GreaterEqual", new TfliteGreaterEqualParser()); | ||||
| TfliteNodeRegister g_tfliteLessParser("Less", new TfliteLessParser()); | TfliteNodeRegister g_tfliteLessParser("Less", new TfliteLessParser()); | ||||
| TfliteNodeRegister g_tfliteLessEqualParser("LessEqual", new TfliteLessEqualParser()); | TfliteNodeRegister g_tfliteLessEqualParser("LessEqual", new TfliteLessEqualParser()); | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -25,7 +25,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class TfliteDoubleInputOpParser : public TfliteNodeParser { | class TfliteDoubleInputOpParser : public TfliteNodeParser { | ||||
| public: | public: | ||||
| TfliteDoubleInputOpParser() : TfliteNodeParser("node_name") {} | TfliteDoubleInputOpParser() : TfliteNodeParser("node_name") {} | ||||
| @@ -206,7 +205,6 @@ class TfliteLessEqualParser : public TfliteCompareOpParser { | |||||
| public: | public: | ||||
| TfliteLessEqualParser() : TfliteCompareOpParser() {} | TfliteLessEqualParser() : TfliteCompareOpParser() {} | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -72,6 +72,5 @@ STATUS TfliteBatchToSpaceParser::Parse(const std::unique_ptr<tflite::OperatorT> | |||||
| TfliteNodeRegister g_tfliteBatchToSpaceParser("BatchToSpace", new TfliteBatchToSpaceParser()); | TfliteNodeRegister g_tfliteBatchToSpaceParser("BatchToSpace", new TfliteBatchToSpaceParser()); | ||||
| TfliteNodeRegister g_TfliteBatchToSpaceNDParser("BatchToSpaceND", new TfliteBatchToSpaceNDParser()); | TfliteNodeRegister g_TfliteBatchToSpaceNDParser("BatchToSpaceND", new TfliteBatchToSpaceNDParser()); | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -42,7 +42,6 @@ class TfliteBatchToSpaceNDParser : public TfliteBatchToSpaceParser { | |||||
| public: | public: | ||||
| TfliteBatchToSpaceNDParser() : TfliteBatchToSpaceParser() {} | TfliteBatchToSpaceNDParser() : TfliteBatchToSpaceParser() {} | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -22,8 +22,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| STATUS TfliteDepthwiseConv2DParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflite_op, | STATUS TfliteDepthwiseConv2DParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflite_op, | ||||
| const std::vector<std::unique_ptr<tflite::TensorT>> &tflite_tensors, | const std::vector<std::unique_ptr<tflite::TensorT>> &tflite_tensors, | ||||
| const std::vector<std::unique_ptr<tflite::BufferT>> &tflite_model_buffer, | const std::vector<std::unique_ptr<tflite::BufferT>> &tflite_model_buffer, | ||||
| @@ -68,7 +68,7 @@ STATUS TfliteFullyConnectedParser::Parse(const std::unique_ptr<tflite::OperatorT | |||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[1], tensors_id->size(), tflite_tensors.size(), schema::Format_KHWC); | tflite_op->inputs[1], tensors_id->size(), tflite_tensors.size(), schema::Format_KHWC); | ||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[2], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| tflite_op->inputs[2], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | ||||
| return RET_OK; | return RET_OK; | ||||
| @@ -71,6 +71,5 @@ STATUS TfliteLogicalParser::Parse(const std::unique_ptr<tflite::OperatorT> &tfli | |||||
| TfliteNodeRegister g_TfliteLogicalAndParser("LogicalAnd", new TfliteLogicalAndParser()); | TfliteNodeRegister g_TfliteLogicalAndParser("LogicalAnd", new TfliteLogicalAndParser()); | ||||
| TfliteNodeRegister g_TfliteLogicalNotParser("LogicalNot", new TfliteLogicalNotParser()); | TfliteNodeRegister g_TfliteLogicalNotParser("LogicalNot", new TfliteLogicalNotParser()); | ||||
| TfliteNodeRegister g_TfliteLogicalOrParser("LogicalOr", new TfliteLogicalOrParser()); | TfliteNodeRegister g_TfliteLogicalOrParser("LogicalOr", new TfliteLogicalOrParser()); | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -25,7 +25,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class TfliteLogicalParser : public TfliteNodeParser { | class TfliteLogicalParser : public TfliteNodeParser { | ||||
| public: | public: | ||||
| TfliteLogicalParser() : TfliteNodeParser("node_name") {} | TfliteLogicalParser() : TfliteNodeParser("node_name") {} | ||||
| @@ -59,7 +59,7 @@ STATUS TflitePadParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflite_o | |||||
| op->primitive->value.value = attr.release(); | op->primitive->value.value = attr.release(); | ||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | ||||
| return RET_OK; | return RET_OK; | ||||
| @@ -96,6 +96,5 @@ TfliteNodeRegister g_TfliteReduceMaxParser("ReduceMax", new TfliteReduceMaxParse | |||||
| TfliteNodeRegister g_TfliteReduceMinParser("ReduceMin", new TfliteReduceMinParser()); | TfliteNodeRegister g_TfliteReduceMinParser("ReduceMin", new TfliteReduceMinParser()); | ||||
| TfliteNodeRegister g_TfliteReduceProdParser("ReduceProd", new TfliteReduceProdParser()); | TfliteNodeRegister g_TfliteReduceProdParser("ReduceProd", new TfliteReduceProdParser()); | ||||
| TfliteNodeRegister g_TfliteReduceAnyParser("ReduceAny", new TfliteReduceAnyParser()); | TfliteNodeRegister g_TfliteReduceAnyParser("ReduceAny", new TfliteReduceAnyParser()); | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -67,7 +67,6 @@ class TfliteReduceAnyParser : public TfliteReduceParser { | |||||
| public: | public: | ||||
| TfliteReduceAnyParser() : TfliteReduceParser() {} | TfliteReduceAnyParser() : TfliteReduceParser() {} | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -49,7 +49,7 @@ STATUS TfliteReshapeParser::Parse(const std::unique_ptr<tflite::OperatorT> &tfli | |||||
| return RET_ERROR; | return RET_ERROR; | ||||
| } | } | ||||
| auto shape_tensor_index = tflite_op->inputs[1]; | auto shape_tensor_index = tflite_op->inputs[1]; | ||||
| const auto & shape_tensor = tflite_tensors[shape_tensor_index]; | |||||
| const auto &shape_tensor = tflite_tensors[shape_tensor_index]; | |||||
| if (shape_tensor == nullptr) { | if (shape_tensor == nullptr) { | ||||
| MS_LOG(ERROR) << "shape_tensor is null"; | MS_LOG(ERROR) << "shape_tensor is null"; | ||||
| return RET_NULL_PTR; | return RET_NULL_PTR; | ||||
| @@ -71,13 +71,13 @@ STATUS TfliteResizeParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflit | |||||
| attr->preserveAspectRatio = false; | attr->preserveAspectRatio = false; | ||||
| auto tfliteResizeTensorIndex = tflite_op->inputs[1]; | auto tfliteResizeTensorIndex = tflite_op->inputs[1]; | ||||
| const auto & shape_tensor = tflite_tensors[tfliteResizeTensorIndex]; | |||||
| const auto &shape_tensor = tflite_tensors[tfliteResizeTensorIndex]; | |||||
| if (shape_tensor == nullptr) { | if (shape_tensor == nullptr) { | ||||
| MS_LOG(ERROR) << "shape_tensor is null"; | MS_LOG(ERROR) << "shape_tensor is null"; | ||||
| return RET_NULL_PTR; | return RET_NULL_PTR; | ||||
| } | } | ||||
| auto resizeTensorBufferIndex = shape_tensor->buffer; | auto resizeTensorBufferIndex = shape_tensor->buffer; | ||||
| const auto & buff = tflite_model_buffer.at(resizeTensorBufferIndex); | |||||
| const auto &buff = tflite_model_buffer.at(resizeTensorBufferIndex); | |||||
| if (buff == nullptr) { | if (buff == nullptr) { | ||||
| MS_LOG(ERROR) << "buff_data is null"; | MS_LOG(ERROR) << "buff_data is null"; | ||||
| return RET_NULL_PTR; | return RET_NULL_PTR; | ||||
| @@ -92,7 +92,7 @@ STATUS TfliteResizeParser::Parse(const std::unique_ptr<tflite::OperatorT> &tflit | |||||
| op->primitive->value.value = attr.release(); | op->primitive->value.value = attr.release(); | ||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | AddOpOutput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | tflite_op->outputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | ||||
| return RET_OK; | return RET_OK; | ||||
| @@ -47,7 +47,6 @@ class TfliteResizeNearestNeighborParser : public TfliteResizeParser { | |||||
| public: | public: | ||||
| TfliteResizeNearestNeighborParser() : TfliteResizeParser() {} | TfliteResizeNearestNeighborParser() : TfliteResizeParser() {} | ||||
| }; | }; | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -54,7 +54,7 @@ STATUS TfliteScatterNdParser::Parse(const std::unique_ptr<tflite::OperatorT> &tf | |||||
| // in tflite, kIndices = 0, kUpdates = 1, kShape = 2 | // in tflite, kIndices = 0, kUpdates = 1, kShape = 2 | ||||
| // in mslite, kScatterShapeIndex = 0, kScatterIndicesIndex = 1, kScatterUpdateIndex = 2; | // in mslite, kScatterShapeIndex = 0, kScatterIndicesIndex = 1, kScatterUpdateIndex = 2; | ||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[2], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| tflite_op->inputs[2], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | |||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | tflite_op->inputs[0], tensors_id->size(), tflite_tensors.size(), schema::Format_NHWC); | ||||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | AddOpInput(op, tensors_id, tensors_format, tensors_id_map, | ||||
| @@ -192,10 +192,10 @@ size_t GetDataTypeSize(const TypeId &data_type) { | |||||
| } | } | ||||
| STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor, | STATUS getPaddingParam(const std::unique_ptr<tflite::TensorT> &tensor, | ||||
| schema::PadMode pad_mode, | |||||
| int strideH, int strideW, | |||||
| int windowH, int windowW, | |||||
| std::vector<int> *params) { | |||||
| schema::PadMode pad_mode, | |||||
| int strideH, int strideW, | |||||
| int windowH, int windowW, | |||||
| std::vector<int> *params) { | |||||
| if (tensor == nullptr) { | if (tensor == nullptr) { | ||||
| MS_LOG(ERROR) << "the input tensor is null"; | MS_LOG(ERROR) << "the input tensor is null"; | ||||
| return RET_ERROR; | return RET_ERROR; | ||||
| @@ -239,6 +239,5 @@ void Split(const std::string &src_str, std::vector<std::string> *dst_str, const | |||||
| dst_str->push_back(src_str.substr(p1)); | dst_str->push_back(src_str.substr(p1)); | ||||
| } | } | ||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -73,14 +73,13 @@ void BitPack::BitPacking(const std::vector<uint8_t>& originDataVec, std::vector< | |||||
| } | } | ||||
| size_t remainBitData = bitDataVec.size(); | size_t remainBitData = bitDataVec.size(); | ||||
| if ( 8 > remainBitData && remainBitData > 0 ) { | |||||
| for ( int i = 0; i < 8 - remainBitData; i++ ) { | |||||
| if (8 > remainBitData && remainBitData > 0) { | |||||
| for (int i = 0; i < 8 - remainBitData; i++) { | |||||
| bitDataVec.push(0); | bitDataVec.push(0); | ||||
| } | } | ||||
| PackFromOriginToUint8(bitDataVec, packedDataVec); | PackFromOriginToUint8(bitDataVec, packedDataVec); | ||||
| } | } | ||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -42,7 +42,6 @@ using std::vector; | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| namespace quant { | namespace quant { | ||||
| struct DivergInfo { | struct DivergInfo { | ||||
| std::vector<float> histogram; | std::vector<float> histogram; | ||||
| CNodePtr cnode; | CNodePtr cnode; | ||||
| @@ -33,7 +33,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| namespace quant { | namespace quant { | ||||
| static constexpr size_t UINT8_QUANTIZATION = 8; | static constexpr size_t UINT8_QUANTIZATION = 8; | ||||
| /** | /** | ||||
| @@ -124,7 +123,6 @@ STATUS QuantFilter(ParamValueLitePtr &weightPtr, QuantType quantType, int quant_ | |||||
| size_t bitNum = UINT8_QUANTIZATION, bool per_channel = false); | size_t bitNum = UINT8_QUANTIZATION, bool per_channel = false); | ||||
| STATUS PostBitPack(float *weights, size_t shapeSize, size_t bitNum = UINT8_QUANTIZATION); | STATUS PostBitPack(float *weights, size_t shapeSize, size_t bitNum = UINT8_QUANTIZATION); | ||||
| } // namespace quant | } // namespace quant | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -26,7 +26,6 @@ using std::vector; | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| namespace quant { | namespace quant { | ||||
| WeightQuantizer::WeightQuantizer(FuncGraphPtr graph, const string &weightSize, | WeightQuantizer::WeightQuantizer(FuncGraphPtr graph, const string &weightSize, | ||||
| const std::string &convWeightChannelThreshold, const std::string &bitNum) | const std::string &convWeightChannelThreshold, const std::string &bitNum) | ||||
| : Quantizer(graph) { | : Quantizer(graph) { | ||||
| @@ -284,7 +284,7 @@ void CheckLeastInputSize(const CNodePtr &node, const int size) { | |||||
| } | } | ||||
| ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, int kernel_num, | ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, int kernel_num, | ||||
| const ParamValueLitePtr &weight_tensor) { | |||||
| const ParamValueLitePtr &weight_tensor) { | |||||
| auto bias_parameter = func_graph->add_parameter(); | auto bias_parameter = func_graph->add_parameter(); | ||||
| MS_ASSERT(bias_parameter != nullptr); | MS_ASSERT(bias_parameter != nullptr); | ||||
| std::vector<int> shape = {kernel_num}; | std::vector<int> shape = {kernel_num}; | ||||
| @@ -48,7 +48,7 @@ void CheckIfNodeIsParam(const AnfNodePtr &node); | |||||
| void CheckLeastInputSize(const CNodePtr &node, int size); | void CheckLeastInputSize(const CNodePtr &node, int size); | ||||
| ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, int kernel_num, | ParameterPtr AddNewBiasNode(float *bias_data, const FuncGraphPtr &func_graph, int kernel_num, | ||||
| const ParamValueLitePtr &weight_tensor); | |||||
| const ParamValueLitePtr &weight_tensor); | |||||
| schema::PrimitiveType GetCNodeType(const BaseRef &node); | schema::PrimitiveType GetCNodeType(const BaseRef &node); | ||||
| @@ -27,8 +27,8 @@ class ConvActivationFusion : public PatternProcessPass { | |||||
| public: | public: | ||||
| explicit ConvActivationFusion(bool multigraph = true, const std::string &name = "conv_activation_fusion", | explicit ConvActivationFusion(bool multigraph = true, const std::string &name = "conv_activation_fusion", | ||||
| schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | schema::PrimitiveType primitive = schema::PrimitiveType_LeakyReLU, | ||||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) : primitive_type( | |||||
| primitive), activation_type(activation), PatternProcessPass(name, multigraph) {} | |||||
| schema::ActivationType activation = schema::ActivationType_LEAKY_RELU) | |||||
| : primitive_type(primitive), activation_type(activation), PatternProcessPass(name, multigraph) {} | |||||
| ~ConvActivationFusion() override = default; | ~ConvActivationFusion() override = default; | ||||
| const BaseRef DefinePattern() const override; | const BaseRef DefinePattern() const override; | ||||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | ||||
| @@ -394,6 +394,5 @@ int RunTimeProfile(int argc, const char **argv) { | |||||
| return RET_OK; | return RET_OK; | ||||
| } | } | ||||
| } // namespace lite | } // namespace lite | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -34,7 +34,6 @@ | |||||
| namespace mindspore { | namespace mindspore { | ||||
| namespace lite { | namespace lite { | ||||
| class MS_API TimeProfileFlags : public virtual FlagParser { | class MS_API TimeProfileFlags : public virtual FlagParser { | ||||
| public: | public: | ||||
| TimeProfileFlags() { | TimeProfileFlags() { | ||||