Browse Source

add_channel_to_attr

tags/v1.1.0
wanyiming 5 years ago
parent
commit
237bcfd36b
3 changed files with 88 additions and 3 deletions
  1. +3
    -3
      mindspore/nn/layer/basic.py
  2. +20
    -0
      tests/st/ops/ascend/test_dense.py
  3. +65
    -0
      tests/st/ops/gpu/test_dense.py

+ 3
- 3
mindspore/nn/layer/basic.py View File

@@ -188,10 +188,10 @@ class Dense(Cell):
ValueError: If weight_init or bias_init shape is incorrect.

Inputs:
- **input** (Tensor) - Tensor of shape :math:`(N, in\_channels)`.
- **input** (Tensor) - Tensor of shape :math:`(*, in\_channels)`.

Outputs:
Tensor of shape :math:`(N, out\_channels)`.
Tensor of shape :math:`(*, out\_channels)`.

Examples:
>>> input = Tensor(np.random.randint(0, 255, [2, 3]), mindspore.float32)
@@ -200,7 +200,7 @@ class Dense(Cell):
[[ 2.5246444 2.2738023 0.5711005 -3.9399147 ]
[ 1.0739875 4.0155234 0.94188046 -5.459526 ]]
"""
@cell_attr_register(attrs=['has_bias', 'activation'])
@cell_attr_register(attrs=['has_bias', 'activation', 'in_channels', 'out_channels'])
def __init__(self,
in_channels,
out_channels,


+ 20
- 0
tests/st/ops/ascend/test_dense.py View File

@@ -31,6 +31,18 @@ class Net(nn.Cell):
def construct(self, x):
return self.dense(x)

class MultiLayerDense(nn.Cell):
def __init__(self):
super(MultiLayerDense, self).__init__()
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)

@ms_function
def construct(self, x):
x = self.dense1(x)
x = self.dense2(x)
return x


def test_net():
x = np.random.randn(32, 2048).astype(np.float32)
@@ -46,3 +58,11 @@ def test_net_ND():
output = net(Tensor(x))
print(x)
print(output.asnumpy())


def test_net_multilayer():
x = np.random.randn(16, 32, 256).astype(np.float32)
net = MultiLayerDense()
output = net(Tensor(x))
print(x)
print(output.asnumpy())

+ 65
- 0
tests/st/ops/gpu/test_dense.py View File

@@ -0,0 +1,65 @@
# Copyright 2019 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
import numpy as np

import mindspore.context as context
import mindspore.nn as nn
from mindspore import Tensor

context.set_context(device_target="GPU")


class Net(nn.Cell):
def __init__(self):
super(Net, self).__init__()
self.dense = nn.Dense(2048, 1001)

def construct(self, x):
return self.dense(x)

class MultiLayerDense(nn.Cell):
def __init__(self):
super(MultiLayerDense, self).__init__()
self.dense1 = nn.Dense(in_channels=256, out_channels=512)
self.dense1 = nn.Dense(in_channels=512, out_channels=1024)

def construct(self, x):
x = self.dense1(x)
x = self.dense2(x)
return x


def test_net():
x = np.random.randn(32, 2048).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(x)
print(output.asnumpy())


def test_net_ND():
x = np.random.randn(2, 332, 2048).astype(np.float32)
net = Net()
output = net(Tensor(x))
print(x)
print(output.asnumpy())


def test_net_multilayer():
x = np.random.randn(16, 32, 256).astype(np.float32)
net = MultiLayerDense()
output = net(Tensor(x))
print(x)
print(output.asnumpy())

Loading…
Cancel
Save