|
|
|
@@ -0,0 +1,65 @@ |
|
|
|
# Copyright 2019 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
|
|
|
|
context.set_context(device_target="GPU") |
|
|
|
|
|
|
|
|
|
|
|
class Net(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(Net, self).__init__() |
|
|
|
self.dense = nn.Dense(2048, 1001) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
return self.dense(x) |
|
|
|
|
|
|
|
class MultiLayerDense(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(MultiLayerDense, self).__init__() |
|
|
|
self.dense1 = nn.Dense(in_channels=256, out_channels=512) |
|
|
|
self.dense1 = nn.Dense(in_channels=512, out_channels=1024) |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.dense1(x) |
|
|
|
x = self.dense2(x) |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
def test_net(): |
|
|
|
x = np.random.randn(32, 2048).astype(np.float32) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(x) |
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_ND(): |
|
|
|
x = np.random.randn(2, 332, 2048).astype(np.float32) |
|
|
|
net = Net() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(x) |
|
|
|
print(output.asnumpy()) |
|
|
|
|
|
|
|
|
|
|
|
def test_net_multilayer(): |
|
|
|
x = np.random.randn(16, 32, 256).astype(np.float32) |
|
|
|
net = MultiLayerDense() |
|
|
|
output = net(Tensor(x)) |
|
|
|
print(x) |
|
|
|
print(output.asnumpy()) |