|
|
|
@@ -35,7 +35,7 @@ The overall network architecture of InceptionV3 is show below: |
|
|
|
|
|
|
|
Dataset used can refer to paper. |
|
|
|
|
|
|
|
- Dataset size: ~125G, 1.2W colorful images in 1000 classes |
|
|
|
- Dataset size: 125G, 1250k colorful images in 1000 classes |
|
|
|
- Train: 120G, 1200k images |
|
|
|
- Test: 5G, 50k images |
|
|
|
- Data format: RGB images. |
|
|
|
@@ -217,19 +217,21 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942} |
|
|
|
|
|
|
|
### Training Performance |
|
|
|
|
|
|
|
| Parameters | InceptionV3 | | |
|
|
|
| Parameters | Ascend | GPU | |
|
|
|
| -------------------------- | ---------------------------------------------- | ------------------------- | |
|
|
|
| Model Version | V1 | V1 | |
|
|
|
| Model Version | InceptionV3 | InceptionV3 | |
|
|
|
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | NV SMI V100-16G(PCIE),cpu:2.10GHz 96cores, memory:250G | |
|
|
|
| uploaded Date | 08/21/2020 | 08/21/2020 | |
|
|
|
| MindSpore Version | 0.6.0-beta | 0.6.0-beta | |
|
|
|
| Dataset | 1200k images | 1200k images | |
|
|
|
| Batch_size | 128 | 128 | |
|
|
|
| Training Parameters | src/config.py | src/config.py | |
|
|
|
| Optimizer | RMSProp | RMSProp | |
|
|
|
| Loss Function | SoftmaxCrossEntropy | SoftmaxCrossEntropy | |
|
|
|
| outputs | probability | probability | |
|
|
|
| Outputs | probability | probability | |
|
|
|
| Loss | 1.98 | 1.98 | |
|
|
|
| Accuracy (8p) | ACC1[78.8%] ACC5[94.2%] | ACC1[78.7%] ACC5[94.1%] | |
|
|
|
| Total time (8p) | 11h | 72h | |
|
|
|
| Accuracy (8p) | ACC1[78.8%] ACC5[94.2%] | ACC1[78.7%] ACC5[94.1%] | |
|
|
|
| Total time (8p) | 11h | 72h | |
|
|
|
| Params (M) | 103M | 103M | |
|
|
|
| Checkpoint for Fine tuning | 313M | 312M | |
|
|
|
| Scripts | [inceptionv3 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3) | [inceptionv3 script](https://gitee.com/mindspore/mindspore/tree/master/model_zoo/official/cv/inceptionv3) | |
|
|
|
@@ -237,15 +239,15 @@ metric: {'Loss': 1.778, 'Top1-Acc':0.788, 'Top5-Acc':0.942} |
|
|
|
|
|
|
|
#### Inference Performance |
|
|
|
|
|
|
|
| Parameters | InceptionV3 | |
|
|
|
| Parameters | Ascend | |
|
|
|
| ------------------- | --------------------------- | |
|
|
|
| Model Version | V1 | |
|
|
|
| Resource | Ascend 910 | |
|
|
|
| Uploaded Date | 08/22/2020 (month/day/year) | |
|
|
|
| Model Version | InceptionV3 | |
|
|
|
| Resource | Ascend 910, cpu:2.60GHz 56cores, memory:314G | |
|
|
|
| Uploaded Date | 08/22/2020 | |
|
|
|
| MindSpore Version | 0.6.0-beta | |
|
|
|
| Dataset | 50k images | |
|
|
|
| batch_size | 128 | |
|
|
|
| outputs | probability | |
|
|
|
| Batch_size | 128 | |
|
|
|
| Outputs | probability | |
|
|
|
| Accuracy | ACC1[78.8%] ACC5[94.2%] | |
|
|
|
| Total time | 2mins | |
|
|
|
| Model for inference | 92M (.onnx file) | |
|
|
|
|