| @@ -826,5 +826,26 @@ std::string GetProcessorStr(const AnfNodePtr &anf_node) { | |||
| return processor; | |||
| } | |||
| float Scaling(size_t in_size, size_t out_size, bool align_corners) { | |||
| return (align_corners && out_size > 1) ? (in_size - 1) / static_cast<float>(out_size - 1) | |||
| : in_size / static_cast<float>(out_size); | |||
| } | |||
| float ScaleGrid(const int x, const float scale) { return static_cast<float>(x) * scale; } | |||
| void ComputeInterpolationWeights(const size_t out_size, const size_t in_size, const float scale, | |||
| CachedInterpolation *interpolation) { | |||
| interpolation[out_size].lower = 0; | |||
| interpolation[out_size].upper = 0; | |||
| for (size_t i = 0; i <= out_size - 1; ++i) { | |||
| const float in = ScaleGrid(i, scale); | |||
| const float in_f = std::floor(in); | |||
| interpolation[i].lower = std::max(static_cast<size_t>(in_f), static_cast<size_t>(0)); | |||
| interpolation[i].upper = std::min(static_cast<size_t>(std::ceil(in)), in_size - 1); | |||
| interpolation[i].lerp = in - in_f; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -102,6 +102,16 @@ void GetGraphRealOutput(const FuncGraphPtr &func_graph, std::vector<std::pair<An | |||
| bool IsWeightBoundary(const AnfNodePtr &node); | |||
| std::vector<int64_t> GetReduceAttrAxis(const CNodePtr &cnode); | |||
| std::string GetProcessorStr(const AnfNodePtr &anf_node); | |||
| float Scaling(size_t in_size, size_t out_size, bool align_corners); | |||
| float ScaleGrid(const int x, const float scale); | |||
| struct CachedInterpolation { | |||
| size_t lower; | |||
| size_t upper; | |||
| float lerp; | |||
| }; | |||
| void ComputeInterpolationWeights(const size_t out_size, const size_t in_size, const float scale, | |||
| CachedInterpolation *interpolation); | |||
| template <typename T> | |||
| inline std::string Vector2Str(const std::vector<T> &inputs) { | |||
| @@ -113,6 +123,14 @@ inline std::string Vector2Str(const std::vector<T> &inputs) { | |||
| } | |||
| return ""; | |||
| } | |||
| template <typename T> | |||
| inline T ComputeLerp(T top_left, T top_right, T bottom_left, T bottom_right, T x_lerp, T y_lerp) { | |||
| T top = top_left + (top_right - top_left) * x_lerp; | |||
| T bottom = bottom_left + (bottom_right - bottom_left) * x_lerp; | |||
| return top + (bottom - top) * y_lerp; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,113 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/resize_bilinear_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "backend/kernel_compiler/common_utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void ResizeBilinearCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| size_ = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, SIZE); | |||
| align_corners_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "align_corners"); | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| size_t in_height = shape_[2]; | |||
| size_t in_width = shape_[3]; | |||
| size_t out_height = size_[0]; | |||
| size_t out_width = size_[1]; | |||
| height_scale = Scaling(in_height, out_height, align_corners_); | |||
| width_scale = Scaling(in_width, out_width, align_corners_); | |||
| } | |||
| bool ResizeBilinearCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeFloat16) { | |||
| LaunchKernel<float16, float>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32) { | |||
| LaunchKernel<float, float>(inputs, outputs); | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T1, typename T2> | |||
| void ResizeBilinearCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| auto input_addr = reinterpret_cast<T1 *>(inputs[0]->addr); | |||
| auto output_addr = reinterpret_cast<T2 *>(outputs[0]->addr); | |||
| size_t batch_size = shape_[0]; | |||
| size_t channel = shape_[1]; | |||
| size_t in_height = shape_[2]; | |||
| size_t in_width = shape_[3]; | |||
| size_t out_height = size_[0]; | |||
| size_t out_width = size_[1]; | |||
| size_t out_hw_size = out_height * out_width; | |||
| size_t in_hw_size = in_height * in_width; | |||
| size_t bhwc_size = in_hw_size * channel * batch_size; | |||
| if (out_height == in_height && out_width == in_width) { | |||
| for (size_t i = 0; i < bhwc_size; ++i) { | |||
| output_addr[i] = static_cast<float>(input_addr[i]); | |||
| } | |||
| } | |||
| std::vector<CachedInterpolation> ys(out_height + 1); | |||
| std::vector<CachedInterpolation> xs(out_width + 1); | |||
| ComputeInterpolationWeights(out_height, in_height, height_scale, ys.data()); | |||
| ComputeInterpolationWeights(out_width, in_width, width_scale, xs.data()); | |||
| for (size_t b = 0; b < batch_size; ++b) { | |||
| for (size_t c = 0; c < channel; ++c) { | |||
| for (size_t h = 0; h < out_height; ++h) { | |||
| const T1 *ys_input_lower_ptr = input_addr + ys[h].lower * in_width; | |||
| const T1 *ys_input_upper_ptr = input_addr + ys[h].upper * in_width; | |||
| const T2 ys_lerp = T2(ys[h].lerp); | |||
| for (size_t w = 0; w < out_width; ++w) { | |||
| const size_t xs_lower = xs[w].lower; | |||
| const size_t xs_upper = xs[w].upper; | |||
| const T2 xs_lerp = T2(xs[w].lerp); | |||
| const T2 top_left(ys_input_lower_ptr[xs_lower]); | |||
| const T2 top_right(ys_input_lower_ptr[xs_upper]); | |||
| const T2 bottom_left(ys_input_upper_ptr[xs_lower]); | |||
| const T2 bottom_right(ys_input_upper_ptr[xs_upper]); | |||
| output_addr[h * out_width + w] = | |||
| ComputeLerp(top_left, top_right, bottom_left, bottom_right, xs_lerp, ys_lerp); | |||
| } | |||
| } | |||
| output_addr += out_hw_size; | |||
| input_addr += in_hw_size; | |||
| } | |||
| } | |||
| } | |||
| void ResizeBilinearCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear needs 1 inputs, but gets " << input_num; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear expects 1 output, but gets" << output_num; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,58 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_CPU_KERNEL_H_ | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class ResizeBilinearCPUKernel : public CPUKernel { | |||
| public: | |||
| ResizeBilinearCPUKernel() = default; | |||
| ~ResizeBilinearCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T1, typename T2> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| bool align_corners_ = false; | |||
| float height_scale; | |||
| float width_scale; | |||
| std::vector<int64_t> size_; | |||
| std::vector<size_t> shape_; | |||
| }; | |||
| MS_REG_CPU_KERNEL(ResizeBilinear, KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat32), | |||
| ResizeBilinearCPUKernel); | |||
| MS_REG_CPU_KERNEL(ResizeBilinear, KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ResizeBilinearCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,106 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/resize_bilinear_grad_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "backend/kernel_compiler/common_utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void ResizeBilinearGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| shape_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| size_ = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| align_corners_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "align_corners"); | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| size_t in_height = shape_[2]; | |||
| size_t in_width = shape_[3]; | |||
| size_t out_height = size_[2]; | |||
| size_t out_width = size_[3]; | |||
| height_scale = Scaling(out_height, in_height, align_corners_); | |||
| width_scale = Scaling(out_width, in_width, align_corners_); | |||
| } | |||
| bool ResizeBilinearGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeFloat16) { | |||
| LaunchKernel<float16>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32) { | |||
| LaunchKernel<float>(inputs, outputs); | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void ResizeBilinearGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| auto dloss_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||
| auto output_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||
| size_t batch_size = shape_[0]; | |||
| size_t channel = shape_[1]; | |||
| size_t in_height = shape_[2]; | |||
| size_t in_width = shape_[3]; | |||
| size_t out_height = size_[2]; | |||
| size_t out_width = size_[3]; | |||
| size_t out_hw_size = out_height * out_width; | |||
| size_t in_hw_size = in_height * in_width; | |||
| for (size_t b = 0; b < batch_size; ++b) { | |||
| for (size_t c = 0; c < channel; ++c) { | |||
| for (size_t h = 0; h < in_height; ++h) { | |||
| const float in_y = static_cast<float>(h) * height_scale; | |||
| const size_t top_y_index = std::max(static_cast<size_t>(floorf(in_y)), static_cast<size_t>(0)); | |||
| const size_t bottom_y_index = std::min(static_cast<size_t>(ceilf(in_y)), out_height - 1); | |||
| const float y_lerp = in_y - floorf(in_y); | |||
| const float inverse_y_lerp = 1.0 - y_lerp; | |||
| for (size_t w = 0; w < in_width; ++w) { | |||
| const float in_x = static_cast<float>(w) * width_scale; | |||
| const size_t left_x_index = std::max(static_cast<size_t>(floorf(in_x)), static_cast<size_t>(0)); | |||
| const size_t right_x_index = std::min(static_cast<size_t>(ceilf(in_x)), out_width - 1); | |||
| const float x_lerp = in_x - floorf(in_x); | |||
| const float inverse_x_lerp = 1.0 - x_lerp; | |||
| output_addr[top_y_index * out_width + left_x_index] += | |||
| dloss_addr[h * in_width + w] * T(inverse_y_lerp * inverse_x_lerp); | |||
| output_addr[top_y_index * out_width + right_x_index] += | |||
| dloss_addr[h * in_width + w] * T(inverse_y_lerp * x_lerp); | |||
| output_addr[bottom_y_index * out_width + left_x_index] += | |||
| dloss_addr[h * in_width + w] * T(y_lerp * inverse_x_lerp); | |||
| output_addr[bottom_y_index * out_width + right_x_index] += dloss_addr[h * in_width + w] * T(y_lerp * x_lerp); | |||
| } | |||
| } | |||
| output_addr += out_hw_size; | |||
| dloss_addr += in_hw_size; | |||
| } | |||
| } | |||
| } | |||
| void ResizeBilinearGradCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinearGrad needs 2 inputs, but gets " << input_num; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear Gradexpects 1 output, but gets" << output_num; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,62 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_GRAD_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_GRAD_CPU_KERNEL_H_ | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class ResizeBilinearGradCPUKernel : public CPUKernel { | |||
| public: | |||
| ResizeBilinearGradCPUKernel() = default; | |||
| ~ResizeBilinearGradCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| bool align_corners_ = false; | |||
| float height_scale; | |||
| float width_scale; | |||
| std::vector<size_t> size_; | |||
| std::vector<size_t> shape_; | |||
| }; | |||
| MS_REG_CPU_KERNEL( | |||
| ResizeBilinearGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| ResizeBilinearGradCPUKernel); | |||
| MS_REG_CPU_KERNEL( | |||
| ResizeBilinearGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ResizeBilinearGradCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_BILINEAR_GRAD_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,94 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/resize_nearest_neighbor_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "backend/kernel_compiler/common_utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void ResizeNearestNeighborCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| std::vector<int64_t> output_size = AnfAlgo::GetNodeAttr<std::vector<int64_t>>(kernel_node, SIZE); | |||
| align_corners_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "align_corners"); | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| batch_size_ = input_shape[0]; | |||
| channel_ = input_shape[1]; | |||
| in_height_ = input_shape[2]; | |||
| in_width_ = input_shape[3]; | |||
| out_height_ = output_size[0]; | |||
| out_width_ = output_size[1]; | |||
| height_scale_ = Scaling(in_height_, out_height_, align_corners_); | |||
| width_scale_ = Scaling(in_width_, out_width_, align_corners_); | |||
| output_size_ = batch_size_ * channel_ * out_height_ * out_width_; | |||
| } | |||
| bool ResizeNearestNeighborCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeFloat16) { | |||
| LaunchKernel<float16>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32) { | |||
| LaunchKernel<float>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt32) { | |||
| LaunchKernel<int32_t>(inputs, outputs); | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void ResizeNearestNeighborCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| auto input_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||
| auto output_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||
| if (out_height_ == in_height_ && out_width_ == in_width_) { | |||
| for (size_t i = 0; i < output_size_; ++i) { | |||
| output_addr[i] = input_addr[i]; | |||
| } | |||
| } | |||
| for (size_t i = 0; i < output_size_; ++i) { | |||
| size_t pos0 = i / (channel_ * out_height_ * out_width_) % batch_size_; | |||
| size_t pos1 = i / (out_height_ * out_width_) % channel_; | |||
| size_t pos2 = i / (out_width_) % out_height_; | |||
| size_t pos3 = i % out_width_; | |||
| const size_t in_y = std::min((align_corners_) ? static_cast<size_t>(roundf(pos2 * height_scale_)) | |||
| : static_cast<size_t>(floorf(pos2 * height_scale_)), | |||
| in_height_ - 1); | |||
| const size_t in_x = std::min((align_corners_) ? static_cast<size_t>(roundf(pos3 * width_scale_)) | |||
| : static_cast<size_t>(floorf(pos3 * width_scale_)), | |||
| in_width_ - 1); | |||
| size_t input_pos = | |||
| pos0 * channel_ * in_height_ * in_width_ + pos1 * in_height_ * in_width_ + in_y * in_width_ + in_x; | |||
| output_addr[i] = input_addr[input_pos]; | |||
| } | |||
| } | |||
| void ResizeNearestNeighborCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear needs 1 inputs, but gets " << input_num; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear expects 1 output, but gets" << output_num; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,68 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_CPU_KERNEL_H_ | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class ResizeNearestNeighborCPUKernel : public CPUKernel { | |||
| public: | |||
| ResizeNearestNeighborCPUKernel() = default; | |||
| ~ResizeNearestNeighborCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| bool align_corners_{false}; | |||
| size_t batch_size_{0}; | |||
| size_t channel_{0}; | |||
| size_t in_height_{0}; | |||
| size_t in_width_{0}; | |||
| size_t out_height_{0}; | |||
| size_t out_width_{0}; | |||
| size_t output_size_{0}; | |||
| float height_scale_{1.0}; | |||
| float width_scale_{1.0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighbor, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| ResizeNearestNeighborCPUKernel); | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighbor, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ResizeNearestNeighborCPUKernel); | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighbor, KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| ResizeNearestNeighborCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,91 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/resize_nearest_neighbor_grad_cpu_kernel.h" | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "backend/kernel_compiler/common_utils.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void ResizeNearestNeighborGradCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| CheckParam(kernel_node); | |||
| std::vector<size_t> input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| std::vector<size_t> output_size = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| align_corners_ = AnfAlgo::GetNodeAttr<bool>(kernel_node, "align_corners"); | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| batch_size_ = input_shape[0]; | |||
| channel_ = input_shape[1]; | |||
| in_height_ = input_shape[2]; | |||
| in_width_ = input_shape[3]; | |||
| out_height_ = output_size[2]; | |||
| out_width_ = output_size[3]; | |||
| height_scale_ = Scaling(out_height_, in_height_, align_corners_); | |||
| width_scale_ = Scaling(out_width_, in_width_, align_corners_); | |||
| } | |||
| bool ResizeNearestNeighborGradCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| if (dtype_ == kNumberTypeFloat16) { | |||
| LaunchKernel<float16>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32) { | |||
| LaunchKernel<float>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt32) { | |||
| LaunchKernel<int32_t>(inputs, outputs); | |||
| } | |||
| return true; | |||
| } | |||
| template <typename T> | |||
| void ResizeNearestNeighborGradCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<AddressPtr> &outputs) { | |||
| auto dloss_addr = reinterpret_cast<T *>(inputs[0]->addr); | |||
| auto output_addr = reinterpret_cast<T *>(outputs[0]->addr); | |||
| size_t in_hw_size = in_width_ * in_height_; | |||
| size_t out_hw_size = out_width_ * out_height_; | |||
| for (size_t b = 0; b < batch_size_; ++b) { | |||
| for (size_t c = 0; c < channel_; ++c) { | |||
| for (size_t h = 0; h < in_height_; ++h) { | |||
| const size_t out_y = std::min((align_corners_) ? static_cast<size_t>(roundf(h * height_scale_)) | |||
| : static_cast<size_t>(floorf(h * height_scale_)), | |||
| out_height_ - 1); | |||
| for (size_t w = 0; w < in_width_; ++w) { | |||
| const size_t out_x = std::min((align_corners_) ? static_cast<size_t>(roundf(w * width_scale_)) | |||
| : static_cast<size_t>(floorf(w * width_scale_)), | |||
| out_width_ - 1); | |||
| output_addr[out_y * out_width_ + out_x] += dloss_addr[h * in_width_ + w]; | |||
| } | |||
| } | |||
| output_addr += out_hw_size; | |||
| dloss_addr += in_hw_size; | |||
| } | |||
| } | |||
| } | |||
| void ResizeNearestNeighborGradCPUKernel::CheckParam(const CNodePtr &kernel_node) { | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinearGrad needs 1 inputs, but gets " << input_num; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "ResizeBilinear Gradexpects 1 output, but gets" << output_num; | |||
| } | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,68 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_GRAD_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_GRAD_CPU_KERNEL_H_ | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include <vector> | |||
| #include <algorithm> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class ResizeNearestNeighborGradCPUKernel : public CPUKernel { | |||
| public: | |||
| ResizeNearestNeighborGradCPUKernel() = default; | |||
| ~ResizeNearestNeighborGradCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename T> | |||
| void LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &outputs); | |||
| private: | |||
| void CheckParam(const CNodePtr &kernel_node); | |||
| TypeId dtype_{kTypeUnknown}; | |||
| bool align_corners_{false}; | |||
| size_t batch_size_{0}; | |||
| size_t channel_{0}; | |||
| size_t in_height_{0}; | |||
| size_t in_width_{0}; | |||
| size_t out_height_{0}; | |||
| size_t out_width_{0}; | |||
| float height_scale_{1.0}; | |||
| float width_scale_{1.0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighborGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat16).AddOutputAttr(kNumberTypeFloat16), | |||
| ResizeNearestNeighborGradCPUKernel); | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighborGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddOutputAttr(kNumberTypeFloat32), | |||
| ResizeNearestNeighborGradCPUKernel); | |||
| MS_REG_CPU_KERNEL(ResizeNearestNeighborGrad, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| ResizeNearestNeighborGradCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_RESIZE_NEAREST_NEIGHBOR_GRAD_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,83 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class ResizeBilinearGradAlignCornerT(nn.Cell): | |||
| def __init__(self): | |||
| super(ResizeBilinearGradAlignCornerT, self).__init__() | |||
| self.ResizeBilinearGradAlignCornerT = G.ResizeBilinearGrad( | |||
| align_corners=True) | |||
| def construct(self, dy, size): | |||
| return self.ResizeBilinearGradAlignCornerT(dy, size) | |||
| class ResizeBilinearGradAlignCornerF(nn.Cell): | |||
| def __init__(self): | |||
| super(ResizeBilinearGradAlignCornerF, self).__init__() | |||
| self.ResizeBilinearGradAlignCornerF = G.ResizeBilinearGrad(align_corners=False) | |||
| def construct(self, dy, size): | |||
| return self.ResizeBilinearGradAlignCornerF(dy, size) | |||
| def test_ResizeBilinearGradAlignCornerT(): | |||
| dy = np.array([[[[1, 2], [3, 4]]]]).astype(np.float32) | |||
| orign_image = np.array( | |||
| [[[[1.1, 2.2, 3.2, 2.5], [3.3, 4.4, 5.7, 8.1], [3.3, 4.4, 5.7, 8.1], [3.3, 4.4, 5.7, 8.1]]]]).astype(np.float16) | |||
| expect = np.array([[[[1., 0., 0., 2.], | |||
| [0., 0., 0., 0.], | |||
| [0., 0., 0., 0.], | |||
| [3., 0., 0., 4.]]]]).astype(np.float16) | |||
| rnn = ResizeBilinearGradAlignCornerT() | |||
| output = rnn(Tensor(dy), Tensor(orign_image)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| orign_image = np.array( | |||
| [[[[1.1, 2.2, 3.2, 2.5], [3.3, 4.4, 5.7, 8.1], [3.3, 4.4, 5.7, 8.1], [3.3, 4.4, 5.7, 8.1]]]]).astype(np.float32) | |||
| expect = np.array([[[[1., 0., 0., 2.], | |||
| [0., 0., 0., 0.], | |||
| [0., 0., 0., 0.], | |||
| [3., 0., 0., 4.]]]]).astype(np.float32) | |||
| rnn = ResizeBilinearGradAlignCornerT() | |||
| output = rnn(Tensor(dy), Tensor(orign_image)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| def test_ResizeBilinearGradAlignCornerF(): | |||
| dy = np.array([[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float32) | |||
| orign_image = np.array([[[[1.1, 2.2], [3.3, 4.4]]]]).astype(np.float16) | |||
| expect = np.array([[[[2.25, 0.75], | |||
| [0.75, 4.25]]]]).astype(np.float16) | |||
| rnn = ResizeBilinearGradAlignCornerF() | |||
| output = rnn(Tensor(dy), Tensor(orign_image)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| orign_image = np.array([[[[1.1, 2.2], [3.3, 4.4]]]]).astype(np.float32) | |||
| expect = np.array([[[[2.25, 0.75], | |||
| [0.75, 4.25]]]]).astype(np.float32) | |||
| rnn = ResizeBilinearGradAlignCornerF() | |||
| output = rnn(Tensor(dy), Tensor(orign_image)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| @@ -0,0 +1,571 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore import nn | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class NetResizeBilinear(nn.Cell): | |||
| def __init__(self, size=None, align_corner=False): | |||
| super(NetResizeBilinear, self).__init__() | |||
| self.op = P.ResizeBilinear(size=size, align_corners=align_corner) | |||
| def construct(self, inputs): | |||
| return self.op(inputs) | |||
| def test_resize_nn_grayscale_integer_ratio_half(datatype=np.float16): | |||
| input_tensor = Tensor(np.array( | |||
| [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeBilinear((9, 9)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.13330078, 0.16662598, 0.19995117, 0.23331706, | |||
| 0.26668295, 0.30004883, 0.30004883, 0.30004883], | |||
| [0.19995117, 0.23328993, 0.26662868, 0.29996747, 0.33333334, | |||
| 0.36669925, 0.40006512, 0.40006512, 0.40006512], | |||
| [0.29992676, 0.33327907, 0.36663142, 0.39998373, 0.4333496, | |||
| 0.4667155, 0.5000814, 0.5000814, 0.5000814], | |||
| [0.39990234, 0.43326822, 0.46663412, 0.5, 0.5333659, | |||
| 0.5667318, 0.60009766, 0.60009766, 0.60009766], | |||
| [0.5, 0.5333116, 0.5666233, 0.59993494, 0.6333008, | |||
| 0.66666675, 0.7000326, 0.7000326, 0.7000326], | |||
| [0.60009766, 0.633355, 0.66661245, 0.6998698, 0.7332357, | |||
| 0.7666016, 0.79996747, 0.79996747, 0.79996747], | |||
| [0.7001953, 0.73339844, 0.76660156, 0.7998047, 0.8331706, | |||
| 0.8665365, 0.89990234, 0.89990234, 0.89990234], | |||
| [0.7001953, 0.73339844, 0.76660156, 0.7998047, 0.8331706, | |||
| 0.8665365, 0.89990234, 0.89990234, 0.89990234], | |||
| [0.7001953, 0.73339844, 0.76660156, 0.7998047, 0.8331706, | |||
| 0.8665365, 0.89990234, 0.89990234, 0.89990234]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[9, 9]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h and w | |||
| resize_nn = NetResizeBilinear((1, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeBilinear((1, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.09997559, 0.14996338, 0.19995117, 0.25, 0.30004883, 0.30004883]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeBilinear((6, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.09997559], [0.24993896], [0.39990234], [0.5500488], [0.7001953], [0.7001953]]]]).astype( | |||
| np.float32)) | |||
| error = np.ones(shape=[6, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeBilinear((1, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.09997559, 0.19995117, 0.30004883]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, same w | |||
| resize_nn = NetResizeBilinear((6, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.19995117, 0.30004883], | |||
| [0.24993896, 0.3499756, 0.45007324], | |||
| [0.39990234, 0.5, 0.60009766], | |||
| [0.5500488, 0.64990234, 0.75], | |||
| [0.7001953, 0.7998047, 0.89990234], | |||
| [0.7001953, 0.7998047, 0.89990234]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[6, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeBilinear((3, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.09997559], [0.39990234], [0.7001953]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, larger w | |||
| resize_nn = NetResizeBilinear((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.14996338, 0.19995117, 0.25, 0.30004883, | |||
| 0.30004883], | |||
| [0.39990234, 0.44995117, 0.5, 0.5500488, 0.60009766, | |||
| 0.60009766], | |||
| [0.7001953, 0.75, 0.7998047, 0.8498535, 0.89990234, | |||
| 0.89990234]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeBilinear((3, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array( | |||
| [[[[0.09997559, 0.19995117, 0.30004883], | |||
| [0.39990234, 0.5, 0.60009766], | |||
| [0.7001953, 0.7998047, 0.89990234]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_integer_ratio_float(datatype=np.float32): | |||
| input_tensor = Tensor(np.array( | |||
| [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeBilinear((9, 9)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.13333334, 0.16666667, 0.2, 0.23333335, 0.26666668, 0.3, 0.3, 0.3], | |||
| [0.20000002, 0.23333335, 0.26666668, 0.3, 0.33333337, 0.3666667, 0.40000004, | |||
| 0.40000004, 0.40000004], | |||
| [0.3, 0.33333337, 0.36666667, 0.40000004, 0.43333337, 0.4666667, 0.5, 0.5, | |||
| 0.5], | |||
| [0.4, 0.43333334, 0.46666667, 0.5, 0.53333336, 0.5666667, 0.6, 0.6, 0.6], | |||
| [0.5, 0.53333336, 0.56666666, 0.6, 0.6333333, 0.66666675, 0.70000005, | |||
| 0.70000005, 0.70000005], | |||
| [0.6, 0.6333334, 0.6666667, 0.70000005, 0.73333335, 0.7666667, 0.8, 0.8, 0.8], | |||
| [0.7, 0.73333335, 0.76666665, 0.8, 0.8333333, 0.8666667, 0.9, 0.9, 0.9], | |||
| [0.7, 0.73333335, 0.76666665, 0.8, 0.8333333, 0.8666667, 0.9, 0.9, 0.9], | |||
| [0.7, 0.73333335, 0.76666665, 0.8, 0.8333333, 0.8666667, 0.9, 0.9, | |||
| 0.9]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[9, 9]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h and w | |||
| resize_nn = NetResizeBilinear((1, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeBilinear((1, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1, 0.15, 0.2, 0.25, 0.3, 0.3]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeBilinear((6, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1], [0.25], [0.4], [0.55], [0.7], [0.7]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[6, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeBilinear((1, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1, 0.2, 0.3]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[1, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, same w | |||
| resize_nn = NetResizeBilinear((6, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3], | |||
| [0.25, 0.35000002, 0.45000002], | |||
| [0.4, 0.5, 0.6], | |||
| [0.55, 0.65, 0.75], | |||
| [0.7, 0.8, 0.9], | |||
| [0.7, 0.8, 0.9]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[6, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeBilinear((3, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1], [0.4], [0.7]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 1]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, larger w | |||
| resize_nn = NetResizeBilinear((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.15, 0.2, 0.25, 0.3, 0.3], | |||
| [0.4, 0.45, 0.5, 0.55, 0.6, 0.6], | |||
| [0.7, 0.75, 0.8, 0.85, 0.9, 0.9]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeBilinear((3, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array( | |||
| [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_not_integer_ratio_half(datatype=np.float16): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.9, 0.0, 0.1, 0.2]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeBilinear((7, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.15710449, 0.21425085, 0.2714495, 0.3285784, | |||
| 0.38563755, 0.39990234], | |||
| [0.27141464, 0.3285734, 0.3857422, 0.44294086, 0.5000399, | |||
| 0.55703926, 0.57128906], | |||
| [0.44285366, 0.5000423, 0.5572336, 0.6144322, 0.67150134, | |||
| 0.7284409, 0.7426758], | |||
| [0.6142578, 0.50819117, 0.44293588, 0.5001146, 0.5571937, | |||
| 0.6141731, 0.62841797], | |||
| [0.78564453, 0.4346799, 0.18574369, 0.2428925, 0.3000015, | |||
| 0.3570706, 0.3713379], | |||
| [0.89990234, 0.3856724, 0.01428223, 0.07141115, 0.12854005, | |||
| 0.18566895, 0.19995117], | |||
| [0.89990234, 0.3856724, 0.01428223, 0.07141115, 0.12854005, | |||
| 0.18566895, 0.19995117]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[7, 7]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h and w | |||
| resize_nn = NetResizeBilinear((2, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.09997559, 0.23331706, 0.36661786], | |||
| [0.6999512, 0.33339438, 0.46661377]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeBilinear((2, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.15710449, 0.21425085, 0.2714495, 0.3285784, | |||
| 0.38563755, 0.39990234], | |||
| [0.6999512, 0.47143552, 0.3143398, 0.37150356, 0.4285976, | |||
| 0.48562187, 0.49987793]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 7]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeBilinear((5, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.23331706, 0.36661786], | |||
| [0.33999026, 0.47340494, 0.6066081], | |||
| [0.5799805, 0.51343584, 0.64660645], | |||
| [0.8199219, 0.15335283, 0.28662106], | |||
| [0.89990234, 0.0333252, 0.16662598]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[5, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeBilinear((2, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.19995117, 0.30004883, 0.39990234], | |||
| [0.6999512, 0.30004883, 0.40008545, 0.49987793]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, same w | |||
| resize_nn = NetResizeBilinear((8, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.19995117, 0.30004883, 0.39990234], | |||
| [0.24998474, 0.3500061, 0.45010376, 0.5498657], | |||
| [0.3999939, 0.50006104, 0.6001587, 0.6998291], | |||
| [0.5499878, 0.52508545, 0.62516785, 0.724823], | |||
| [0.6999512, 0.30004883, 0.40008545, 0.49987793], | |||
| [0.84991455, 0.07501221, 0.17500305, 0.27493286], | |||
| [0.89990234, 0., 0.09997559, 0.19995117], | |||
| [0.89990234, 0., 0.09997559, 0.19995117]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[8, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeBilinear((3, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.30004883], | |||
| [0.5, 0.7001953], | |||
| [0.89990234, 0.09997559]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 2]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, larger w | |||
| resize_nn = NetResizeBilinear((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.16662598, 0.23331706, 0.30004883, 0.36661786, | |||
| 0.39990234], | |||
| [0.5, 0.56673175, 0.63346356, 0.7001953, 0.76660156, | |||
| 0.7998047], | |||
| [0.89990234, 0.2999674, 0.0333252, 0.09997559, 0.16662598, | |||
| 0.19995117]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeBilinear((3, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.19995117, 0.30004883, 0.39990234], | |||
| [0.5, 0.60009766, 0.7001953, 0.7998047], | |||
| [0.89990234, 0., 0.09997559, 0.19995117]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_not_integer_ratio_float(datatype=np.float32): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.9, 0.0, 0.1, 0.2]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeBilinear((7, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.15714286, 0.21428573, 0.27142859, 0.32857144, 0.3857143, 0.4], | |||
| [0.27142859, 0.32857144, 0.38571432, 0.44285715, 0.5, 0.55714285, 0.5714286], | |||
| [0.44285715, 0.5, 0.5571429, 0.6142857, 0.67142856, 0.7285714, 0.74285716], | |||
| [0.6142857, 0.5081633, 0.4428572, 0.5, 0.55714285, 0.6142857, 0.62857145], | |||
| [0.78571427, 0.43469384, 0.1857143, 0.24285716, 0.3, 0.35714287, 0.37142855], | |||
| [0.9, 0.38571423, 0.01428572, 0.07142859, 0.12857144, 0.1857143, 0.2], | |||
| [0.9, 0.38571423, 0.01428572, 0.07142859, 0.12857144, 0.1857143, | |||
| 0.2]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[7, 7]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h and w | |||
| resize_nn = NetResizeBilinear((2, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1, 0.23333335, 0.36666667], | |||
| [0.7, 0.33333334, 0.46666667]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeBilinear((2, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.15714286, 0.21428573, 0.27142859, 0.32857144, | |||
| 0.3857143, 0.4], | |||
| [0.7, 0.47142854, 0.31428576, 0.37142858, 0.42857143, | |||
| 0.4857143, 0.5]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 7]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeBilinear((5, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.23333335, 0.36666667], | |||
| [0.34, 0.47333336, 0.6066667], | |||
| [0.58000004, 0.5133333, 0.64666665], | |||
| [0.82000005, 0.1533333, 0.28666663], | |||
| [0.9, 0.03333334, 0.16666669]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[5, 3]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeBilinear((2, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.7, 0.3, 0.4, 0.5]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[2, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # larger h, same w | |||
| resize_nn = NetResizeBilinear((8, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.25, 0.35000002, 0.45, 0.55], | |||
| [0.4, 0.5, 0.6, 0.70000005], | |||
| [0.55, 0.52500004, 0.625, 0.725], | |||
| [0.7, 0.3, 0.4, 0.5], | |||
| [0.84999996, 0.07499999, | |||
| 0.17500001, 0.27499998], | |||
| [0.9, 0., 0.1, 0.2], | |||
| [0.9, 0., 0.1, 0.2]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[8, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeBilinear((3, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.3], | |||
| [0.5, 0.7], | |||
| [0.9, 0.1]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 2]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same h, larger w | |||
| resize_nn = NetResizeBilinear((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.16666667, 0.23333335, 0.3, 0.36666667, 0.4], | |||
| [0.5, 0.56666666, 0.6333333, 0.7, 0.76666665, 0.8], | |||
| [0.9, 0.29999995, 0.03333334, 0.1, 0.16666669, 0.2]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeBilinear((3, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.9, 0., 0.1, 0.2]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 4]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_multiple_images_half(datatype=np.float16): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]], | |||
| [[[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [0.1, 0.2, 0.3]]], | |||
| [[[0.7, 0.8, 0.9], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]]]).astype(datatype)) | |||
| resize_nn = NetResizeBilinear((2, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.14996338, 0.19995117, 0.25, 0.30004883, 0.30004883], | |||
| [0.5500488, 0.5999756, 0.64990234, 0.6999512, 0.75, 0.75]]], | |||
| [[[0.39990234, 0.44995117, 0.5, 0.5500488, 0.60009766, 0.60009766], | |||
| [0.40008545, 0.4499817, 0.49987793, 0.54992676, 0.5999756, 0.5999756]]], | |||
| [[[0.7001953, 0.75, 0.7998047, 0.8498535, 0.89990234, 0.89990234], | |||
| [0.24993896, 0.29995728, 0.3499756, 0.4000244, 0.45007324, | |||
| 0.45007324]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 3, 2, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_multiple_images_float(datatype=np.float32): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]], | |||
| [[[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [0.1, 0.2, 0.3]]], | |||
| [[[0.7, 0.8, 0.9], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]]]).astype(datatype)) | |||
| resize_nn = NetResizeBilinear((2, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.15, 0.2, 0.25, 0.3, 0.3], | |||
| [0.55, 0.6, 0.65, 0.70000005, 0.75, 0.75]]], | |||
| [[[0.4, 0.45, 0.5, 0.55, 0.6, 0.6], | |||
| [0.4, 0.45, 0.5, 0.55, 0.6, 0.6]]], | |||
| [[[0.7, 0.75, 0.8, 0.85, 0.9, 0.9], | |||
| [0.25, 0.3, 0.35000002, 0.4, 0.45000002, 0.45000002]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 3, 2, 6]) * 1.0e-6 | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| def test_resize_nn_grayscale_align_corners_half(datatype=np.float16): | |||
| input_tensor = Tensor( | |||
| np.array([[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) | |||
| resize_nn_corners_aligned = NetResizeBilinear( | |||
| size=(3, 7), align_corner=True) | |||
| output_corners_aligned = resize_nn_corners_aligned(input_tensor) | |||
| resize_nn = NetResizeBilinear((3, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output_align = Tensor(np.array([[[[0.09997559, 0.14996338, 0.19995117, 0.25, 0.30004883, | |||
| 0.3499756, 0.39990234], | |||
| [0.2999878, 0.3500061, 0.4000244, 0.45007324, 0.5001221, | |||
| 0.5499878, 0.5998535], | |||
| [0.5, 0.5500488, 0.60009766, 0.6501465, 0.7001953, | |||
| 0.75, 0.7998047]]]]).astype(np.float32)) | |||
| expected_output = Tensor(np.array([[[[0.09997559, 0.15710449, 0.21425085, 0.2714495, 0.3285784, | |||
| 0.38563755, 0.39990234], | |||
| [0.36665854, 0.42383394, 0.4810152, 0.53821385, 0.59529626, | |||
| 0.6522624, 0.6665039], | |||
| [0.5, 0.55719864, 0.61439735, 0.671596, 0.72865516, | |||
| 0.7855748, 0.7998047]]]]).astype(np.float32)) | |||
| error = np.ones(shape=[3, 7]) * 1.0e-6 | |||
| diff_align = output_corners_aligned.asnumpy() - expected_output_align.asnumpy() | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| assert np.all(abs(diff_align) < error) | |||
| def test_resize_nn_grayscale_align_corners_float(datatype=np.float32): | |||
| input_tensor = Tensor( | |||
| np.array([[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) | |||
| resize_nn_corners_aligned = NetResizeBilinear( | |||
| size=(3, 7), align_corner=True) | |||
| output_corners_aligned = resize_nn_corners_aligned(input_tensor) | |||
| resize_nn = NetResizeBilinear((3, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output_align = Tensor(np.array([[[[0.1, 0.15, 0.2, 0.25, 0.3, | |||
| 0.35000002, 0.4], | |||
| [0.3, 0.35000002, 0.40000004, 0.45, 0.5, | |||
| 0.55, 0.6], | |||
| [0.5, 0.55, 0.6, 0.65, 0.7, | |||
| 0.75, 0.8]]]]).astype(datatype)) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.15714286, 0.21428573, 0.27142859, 0.32857144, | |||
| 0.3857143, 0.4], | |||
| [0.36666667, 0.42380953, 0.48095244, 0.53809524, 0.5952381, | |||
| 0.65238094, 0.6666667], | |||
| [0.5, 0.55714285, 0.61428577, 0.67142856, 0.7285714, | |||
| 0.78571427, 0.8]]]]).astype(datatype)) | |||
| error = np.ones(shape=[3, 7]) * 1.0e-6 | |||
| diff_align = output_corners_aligned.asnumpy() - expected_output_align.asnumpy() | |||
| diff = output.asnumpy() - expected_output.asnumpy() | |||
| assert np.all(abs(diff) < error) | |||
| assert np.all(abs(diff_align) < error) | |||
| @@ -0,0 +1,93 @@ | |||
| # Copyright 2019 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.ops.operations import _grad_ops as G | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class ResizeNearestNeighborGradAlignCornerT(nn.Cell): | |||
| def __init__(self, size=None): | |||
| super(ResizeNearestNeighborGradAlignCornerT, self).__init__() | |||
| self.ResizeNearestNeighborGradAlignCornerT = G.ResizeNearestNeighborGrad( | |||
| align_corners=True) | |||
| self.size = size | |||
| def construct(self, dy): | |||
| return self.ResizeNearestNeighborGradAlignCornerT(dy, self.size) | |||
| class ResizeNearestNeighborGradAlignCornerF(nn.Cell): | |||
| def __init__(self, size=None): | |||
| super(ResizeNearestNeighborGradAlignCornerF, self).__init__() | |||
| self.ResizeNearestNeighborGradAlignCornerF = G.ResizeNearestNeighborGrad( | |||
| align_corners=False) | |||
| self.size = size | |||
| def construct(self, dy): | |||
| return self.ResizeNearestNeighborGradAlignCornerF(dy, self.size) | |||
| def test_ResizeNearestNeighborGradAlignCornerT(): | |||
| dy = np.array([[[[1, 2], [3, 4]]]]).astype(np.float32) | |||
| size = (4, 4) | |||
| expect = np.array( | |||
| [[[[1, 0, 0, 2], [0, 0, 0, 0], [0, 0, 0, 0], [3, 0, 0, 4]]]]).astype(np.float32) | |||
| rnn = ResizeNearestNeighborGradAlignCornerT(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| dy = np.array([[[[1, 2], [3, 4]]]]).astype(np.float16) | |||
| size = (4, 4) | |||
| expect = np.array( | |||
| [[[[1, 0, 0, 2], [0, 0, 0, 0], [0, 0, 0, 0], [3, 0, 0, 4]]]]).astype(np.float16) | |||
| rnn = ResizeNearestNeighborGradAlignCornerT(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| dy = np.array([[[[1, 2], [3, 4]]]]).astype(np.int32) | |||
| size = (4, 4) | |||
| expect = np.array( | |||
| [[[[1, 0, 0, 2], [0, 0, 0, 0], [0, 0, 0, 0], [3, 0, 0, 4]]]]).astype(np.int32) | |||
| rnn = ResizeNearestNeighborGradAlignCornerT(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| def test_ResizeNearestNeighborGradAlignCornerF(): | |||
| dy = np.array( | |||
| [[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float32) | |||
| size = (2, 2) | |||
| expect = np.array([[[[4, 0], [0, 4]]]]).astype(np.float32) | |||
| rnn = ResizeNearestNeighborGradAlignCornerF(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| dy = np.array( | |||
| [[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.float16) | |||
| size = (2, 2) | |||
| expect = np.array([[[[4, 0], [0, 4]]]]).astype(np.float16) | |||
| rnn = ResizeNearestNeighborGradAlignCornerF(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| dy = np.array( | |||
| [[[[1, 1, 0, 0], [1, 1, 0, 0], [0, 0, 1, 1], [0, 0, 1, 1]]]]).astype(np.int32) | |||
| size = (2, 2) | |||
| expect = np.array([[[[4, 0], [0, 4]]]]).astype(np.int32) | |||
| rnn = ResizeNearestNeighborGradAlignCornerF(size=size) | |||
| output = rnn(Tensor(dy)) | |||
| assert np.all(output.asnumpy() == expect) | |||
| @@ -0,0 +1,589 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| from mindspore import context, Tensor | |||
| from mindspore.ops import operations as P | |||
| from mindspore import nn | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| class NetResizeNearestNeighbor(nn.Cell): | |||
| def __init__(self, size=None, align_corners=False): | |||
| super(NetResizeNearestNeighbor, self).__init__() | |||
| self.op = P.ResizeNearestNeighbor(size=size, align_corners=align_corners) | |||
| def construct(self, inputs): | |||
| return self.op(inputs) | |||
| def resize_nn_grayscale_integer_ratio(datatype): | |||
| input_tensor = Tensor(np.array( | |||
| [[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeNearestNeighbor((9, 9)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3], | |||
| [0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3], | |||
| [0.1, 0.1, 0.1, 0.2, 0.2, 0.2, 0.3, 0.3, 0.3], | |||
| [0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6], | |||
| [0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6], | |||
| [0.4, 0.4, 0.4, 0.5, 0.5, 0.5, 0.6, 0.6, 0.6], | |||
| [0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9], | |||
| [0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9], | |||
| [0.7, 0.7, 0.7, 0.8, 0.8, 0.8, 0.9, 0.9, 0.9]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h and w | |||
| resize_nn = NetResizeNearestNeighbor((1, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((1, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((6, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1], [0.1], [0.4], [0.4], [0.7], [0.7]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeNearestNeighbor((1, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, same w | |||
| resize_nn = NetResizeNearestNeighbor((6, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3], | |||
| [0.1, 0.2, 0.3], | |||
| [0.4, 0.5, 0.6], | |||
| [0.4, 0.5, 0.6], | |||
| [0.7, 0.8, 0.9], | |||
| [0.7, 0.8, 0.9]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((3, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1], [0.4], [0.7]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3], | |||
| [0.4, 0.4, 0.5, 0.5, 0.6, 0.6], | |||
| [0.7, 0.7, 0.8, 0.8, 0.9, 0.9]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeNearestNeighbor((3, 3)) | |||
| output = resize_nn(input_tensor) | |||
| np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) | |||
| def resize_nn_grayscale_not_integer_ratio(datatype): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.9, 0.0, 0.1, 0.2]]]]).astype(datatype)) | |||
| # larger h and w | |||
| resize_nn = NetResizeNearestNeighbor((7, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4], | |||
| [0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4], | |||
| [0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4], | |||
| [0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8], | |||
| [0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8], | |||
| [0.9, 0.9, 0.0, 0.0, 0.1, 0.1, 0.2], | |||
| [0.9, 0.9, 0.0, 0.0, 0.1, 0.1, 0.2]]]]).astype(datatype)) | |||
| # smaller h and w | |||
| resize_nn = NetResizeNearestNeighbor((2, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[0.1, 0.2, 0.3], [0.5, 0.6, 0.7]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((2, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.4], | |||
| [0.5, 0.5, 0.6, 0.6, 0.7, 0.7, 0.8]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((5, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3], | |||
| [0.1, 0.2, 0.3], | |||
| [0.5, 0.6, 0.7], | |||
| [0.5, 0.6, 0.7], | |||
| [0.9, 0.0, 0.1]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeNearestNeighbor((2, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, same w | |||
| resize_nn = NetResizeNearestNeighbor((8, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.3, 0.4], | |||
| [0.1, 0.2, 0.3, 0.4], | |||
| [0.1, 0.2, 0.3, 0.4], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.5, 0.6, 0.7, 0.8], | |||
| [0.9, 0.0, 0.1, 0.2], | |||
| [0.9, 0.0, 0.1, 0.2]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((3, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.3], | |||
| [0.5, 0.7], | |||
| [0.9, 0.1]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.3, 0.3, 0.4], | |||
| [0.5, 0.5, 0.6, 0.7, 0.7, 0.8], | |||
| [0.9, 0.9, 0.0, 0.1, 0.1, 0.2]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeNearestNeighbor((3, 4)) | |||
| output = resize_nn(input_tensor) | |||
| np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) | |||
| def test_resize_nn_rgb_integer_ratio(): | |||
| input_tensor = Tensor(np.array( | |||
| [[[[1, 2, 3], [4, 5, 6], [7, 8, 9]], | |||
| [[11, 12, 13], [14, 15, 16], [17, 18, 19]], | |||
| [[111, 112, 113], [114, 115, 116], [117, 118, 119]]]]).astype(np.int32)) | |||
| # larger h and w | |||
| resize_nn = NetResizeNearestNeighbor((9, 9)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output_array = np.array([[[[1, 1, 1, 2, 2, 2, 3, 3, 3], | |||
| [1, 1, 1, 2, 2, 2, 3, 3, 3], | |||
| [1, 1, 1, 2, 2, 2, 3, 3, 3], | |||
| [4, 4, 4, 5, 5, 5, 6, 6, 6], | |||
| [4, 4, 4, 5, 5, 5, 6, 6, 6], | |||
| [4, 4, 4, 5, 5, 5, 6, 6, 6], | |||
| [7, 7, 7, 8, 8, 8, 9, 9, 9], | |||
| [7, 7, 7, 8, 8, 8, 9, 9, 9], | |||
| [7, 7, 7, 8, 8, 8, 9, 9, 9]], | |||
| [[11, 11, 11, 12, 12, 12, 13, 13, 13], | |||
| [11, 11, 11, 12, 12, 12, 13, 13, 13], | |||
| [11, 11, 11, 12, 12, 12, 13, 13, 13], | |||
| [14, 14, 14, 15, 15, 15, 16, 16, 16], | |||
| [14, 14, 14, 15, 15, 15, 16, 16, 16], | |||
| [14, 14, 14, 15, 15, 15, 16, 16, 16], | |||
| [17, 17, 17, 18, 18, 18, 19, 19, 19], | |||
| [17, 17, 17, 18, 18, 18, 19, 19, 19], | |||
| [17, 17, 17, 18, 18, 18, 19, 19, 19]], | |||
| [[111, 111, 111, 112, 112, 112, 113, 113, 113], | |||
| [111, 111, 111, 112, 112, 112, 113, 113, 113], | |||
| [111, 111, 111, 112, 112, 112, 113, 113, 113], | |||
| [114, 114, 114, 115, 115, 115, 116, 116, 116], | |||
| [114, 114, 114, 115, 115, 115, 116, 116, 116], | |||
| [114, 114, 114, 115, 115, 115, 116, 116, 116], | |||
| [117, 117, 117, 118, 118, 118, 119, 119, 119], | |||
| [117, 117, 117, 118, 118, 118, 119, 119, 119], | |||
| [117, 117, 117, 118, 118, 118, 119, 119, 119]]]]) | |||
| expected_output = Tensor(np.array(expected_output_array).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h and w | |||
| resize_nn = NetResizeNearestNeighbor((1, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor( | |||
| np.array([[[[1]], [[11]], [[111]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((1, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 1, 2, 2, 3, 3]], | |||
| [[11, 11, 12, 12, 13, 13]], | |||
| [[111, 111, 112, 112, 113, 113]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((6, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1], [1], [4], [4], [7], [7]], | |||
| [[11], [11], [14], [14], [17], [17]], | |||
| [[111], [111], [114], [114], [117], [117]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeNearestNeighbor((1, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3]], | |||
| [[11, 12, 13]], | |||
| [[111, 112, 113]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, same w | |||
| resize_nn = NetResizeNearestNeighbor((6, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3], | |||
| [1, 2, 3], | |||
| [4, 5, 6], | |||
| [4, 5, 6], | |||
| [7, 8, 9], | |||
| [7, 8, 9]], | |||
| [[11, 12, 13], | |||
| [11, 12, 13], | |||
| [14, 15, 16], | |||
| [14, 15, 16], | |||
| [17, 18, 19], | |||
| [17, 18, 19]], | |||
| [[111, 112, 113], | |||
| [111, 112, 113], | |||
| [114, 115, 116], | |||
| [114, 115, 116], | |||
| [117, 118, 119], | |||
| [117, 118, 119]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((3, 1)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1], [4], [7]], | |||
| [[11], [14], [17]], | |||
| [[111], [114], [117]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 1, 2, 2, 3, 3], | |||
| [4, 4, 5, 5, 6, 6], | |||
| [7, 7, 8, 8, 9, 9]], | |||
| [[11, 11, 12, 12, 13, 13], | |||
| [14, 14, 15, 15, 16, 16], | |||
| [17, 17, 18, 18, 19, 19]], | |||
| [[111, 111, 112, 112, 113, 113], | |||
| [114, 114, 115, 115, 116, 116], | |||
| [117, 117, 118, 118, 119, 119]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeNearestNeighbor((3, 3)) | |||
| output = resize_nn(input_tensor) | |||
| np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) | |||
| def test_resize_nn_rgb_not_integer_ratio(): | |||
| input_tensor = Tensor(np.array([[[[1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [9, 0, 1, 2]], | |||
| [[11, 12, 13, 14], | |||
| [15, 16, 17, 18], | |||
| [19, 10, 11, 12]], | |||
| [[111, 112, 113, 114], | |||
| [115, 116, 117, 118], | |||
| [119, 110, 111, 112]]]]).astype(np.int32)) | |||
| # larger h and w | |||
| resize_nn = NetResizeNearestNeighbor((7, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 1, 2, 2, 3, 3, 4], | |||
| [1, 1, 2, 2, 3, 3, 4], | |||
| [1, 1, 2, 2, 3, 3, 4], | |||
| [5, 5, 6, 6, 7, 7, 8], | |||
| [5, 5, 6, 6, 7, 7, 8], | |||
| [9, 9, 0, 0, 1, 1, 2], | |||
| [9, 9, 0, 0, 1, 1, 2]], | |||
| [[11, 11, 12, 12, 13, 13, 14], | |||
| [11, 11, 12, 12, 13, 13, 14], | |||
| [11, 11, 12, 12, 13, 13, 14], | |||
| [15, 15, 16, 16, 17, 17, 18], | |||
| [15, 15, 16, 16, 17, 17, 18], | |||
| [19, 19, 10, 10, 11, 11, 12], | |||
| [19, 19, 10, 10, 11, 11, 12]], | |||
| [[111, 111, 112, 112, 113, 113, 114], | |||
| [111, 111, 112, 112, 113, 113, 114], | |||
| [111, 111, 112, 112, 113, 113, 114], | |||
| [115, 115, 116, 116, 117, 117, 118], | |||
| [115, 115, 116, 116, 117, 117, 118], | |||
| [119, 119, 110, 110, 111, 111, 112], | |||
| [119, 119, 110, 110, 111, 111, 112]]]]).astype(np.int32)) | |||
| # smaller h and w | |||
| resize_nn = NetResizeNearestNeighbor((2, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3], [5, 6, 7]], | |||
| [[11, 12, 13], [15, 16, 17]], | |||
| [[111, 112, 113], [115, 116, 117]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((2, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 1, 2, 2, 3, 3, 4], | |||
| [5, 5, 6, 6, 7, 7, 8]], | |||
| [[11, 11, 12, 12, 13, 13, 14], | |||
| [15, 15, 16, 16, 17, 17, 18]], | |||
| [[111, 111, 112, 112, 113, 113, 114], | |||
| [115, 115, 116, 116, 117, 117, 118]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((5, 3)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3], | |||
| [1, 2, 3], | |||
| [5, 6, 7], | |||
| [5, 6, 7], | |||
| [9, 0, 1]], | |||
| [[11, 12, 13], | |||
| [11, 12, 13], | |||
| [15, 16, 17], | |||
| [15, 16, 17], | |||
| [19, 10, 11]], | |||
| [[111, 112, 113], | |||
| [111, 112, 113], | |||
| [115, 116, 117], | |||
| [115, 116, 117], | |||
| [119, 110, 111]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # smaller h, same w | |||
| resize_nn = NetResizeNearestNeighbor((2, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3, 4], | |||
| [5, 6, 7, 8]], | |||
| [[11, 12, 13, 14], | |||
| [15, 16, 17, 18]], | |||
| [[111, 112, 113, 114], | |||
| [115, 116, 117, 118]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # larger h, same w | |||
| resize_nn = NetResizeNearestNeighbor((8, 4)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 2, 3, 4], | |||
| [1, 2, 3, 4], | |||
| [1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [5, 6, 7, 8], | |||
| [5, 6, 7, 8], | |||
| [9, 0, 1, 2], | |||
| [9, 0, 1, 2]], | |||
| [[11, 12, 13, 14], | |||
| [11, 12, 13, 14], | |||
| [11, 12, 13, 14], | |||
| [15, 16, 17, 18], | |||
| [15, 16, 17, 18], | |||
| [15, 16, 17, 18], | |||
| [19, 10, 11, 12], | |||
| [19, 10, 11, 12]], | |||
| [[111, 112, 113, 114], | |||
| [111, 112, 113, 114], | |||
| [111, 112, 113, 114], | |||
| [115, 116, 117, 118], | |||
| [115, 116, 117, 118], | |||
| [115, 116, 117, 118], | |||
| [119, 110, 111, 112], | |||
| [119, 110, 111, 112]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, smaller w | |||
| resize_nn = NetResizeNearestNeighbor((3, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 3], [5, 7], [9, 1]], | |||
| [[11, 13], [15, 17], [19, 11]], | |||
| [[111, 113], [115, 117], [119, 111]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same h, larger w | |||
| resize_nn = NetResizeNearestNeighbor((3, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 1, 2, 3, 3, 4], | |||
| [5, 5, 6, 7, 7, 8], | |||
| [9, 9, 0, 1, 1, 2]], | |||
| [[11, 11, 12, 13, 13, 14], | |||
| [15, 15, 16, 17, 17, 18], | |||
| [19, 19, 10, 11, 11, 12]], | |||
| [[111, 111, 112, 113, 113, 114], | |||
| [115, 115, 116, 117, 117, 118], | |||
| [119, 119, 110, 111, 111, 112]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(expected_output.asnumpy(), output.asnumpy()) | |||
| # same w, same h (identity) | |||
| resize_nn = NetResizeNearestNeighbor((3, 4)) | |||
| output = resize_nn(input_tensor) | |||
| np.testing.assert_array_equal(output.asnumpy(), input_tensor.asnumpy()) | |||
| def resize_nn_grayscale_multiple_images(datatype): | |||
| input_tensor = Tensor(np.array([[[[0.1, 0.2, 0.3], [0.4, 0.5, 0.6], [0.7, 0.8, 0.9]]], | |||
| [[[0.4, 0.5, 0.6], [0.7, 0.8, 0.9], [0.1, 0.2, 0.3]]], | |||
| [[[0.7, 0.8, 0.9], [0.1, 0.2, 0.3], [0.4, 0.5, 0.6]]]]).astype(datatype)) | |||
| resize_nn = NetResizeNearestNeighbor((2, 6)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.1, 0.2, 0.2, 0.3, 0.3], | |||
| [0.4, 0.4, 0.5, 0.5, 0.6, 0.6]]], | |||
| [[[0.4, 0.4, 0.5, 0.5, 0.6, 0.6], | |||
| [0.7, 0.7, 0.8, 0.8, 0.9, 0.9]]], | |||
| [[[0.7, 0.7, 0.8, 0.8, 0.9, 0.9], | |||
| [0.1, 0.1, 0.2, 0.2, 0.3, 0.3]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal(output.asnumpy(), expected_output.asnumpy()) | |||
| def resize_nn_grayscale_align_corners(datatype): | |||
| input_tensor = Tensor( | |||
| np.array([[[[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]]]]).astype(datatype)) | |||
| resize_nn_corners_aligned = NetResizeNearestNeighbor( | |||
| (3, 7), align_corners=True) | |||
| output_corners_aligned = resize_nn_corners_aligned(input_tensor) | |||
| resize_nn = NetResizeNearestNeighbor((3, 7)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[0.1, 0.2, 0.2, 0.3, 0.3, 0.4, 0.4], | |||
| [0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8], | |||
| [0.5, 0.6, 0.6, 0.7, 0.7, 0.8, 0.8]]]]).astype(datatype)) | |||
| np.testing.assert_array_equal( | |||
| output_corners_aligned.asnumpy(), expected_output.asnumpy()) | |||
| np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, | |||
| output.asnumpy(), expected_output.asnumpy()) | |||
| def test_resize_nn_rgb_multiple(): | |||
| input_tensor = Tensor(np.array([[[[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], | |||
| [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]], | |||
| [[111, 112, 113, 114, 115], [116, 117, 118, 119, 120]]], | |||
| [[[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]], | |||
| [[111, 112, 113, 114, 115], [116, 117, 118, 119, 120]], | |||
| [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]]], | |||
| [[[111, 112, 113, 114, 115], [116, 117, 118, 119, 120]], | |||
| [[1, 2, 3, 4, 5], [6, 7, 8, 9, 10]], | |||
| [[11, 12, 13, 14, 15], [16, 17, 18, 19, 20]]]]).astype(np.int32)) | |||
| resize_nn = NetResizeNearestNeighbor((5, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 3], [1, 3], [1, 3], [6, 8], [6, 8]], | |||
| [[11, 13], [11, 13], [11, 13], [16, 18], [16, 18]], | |||
| [[111, 113], [111, 113], [111, 113], [116, 118], [116, 118]]], | |||
| [[[11, 13], [11, 13], [11, 13], [16, 18], [16, 18]], | |||
| [[111, 113], [111, 113], [111, 113], [116, 118], [116, 118]], | |||
| [[1, 3], [1, 3], [1, 3], [6, 8], [6, 8]]], | |||
| [[[111, 113], [111, 113], [111, 113], [116, 118], [116, 118]], | |||
| [[1, 3], [1, 3], [1, 3], [6, 8], [6, 8]], | |||
| [[11, 13], [11, 13], [11, 13], [16, 18], [16, 18]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal(output.asnumpy(), expected_output.asnumpy()) | |||
| def test_resize_nn_rgb_align_corners(): | |||
| input_tensor = Tensor(np.array([[[[1, 2, 3, 4], [5, 6, 7, 8]], | |||
| [[11, 12, 13, 14], [15, 16, 17, 18]], | |||
| [[21, 22, 23, 24], [25, 26, 27, 28]]]]).astype(np.int32)) | |||
| resize_nn_corners_aligned = NetResizeNearestNeighbor( | |||
| (5, 2), align_corners=True) | |||
| output_corners_aligned = resize_nn_corners_aligned(input_tensor) | |||
| resize_nn = NetResizeNearestNeighbor((5, 2)) | |||
| output = resize_nn(input_tensor) | |||
| expected_output = Tensor(np.array([[[[1, 4], [1, 4], [5, 8], [5, 8], [5, 8]], | |||
| [[11, 14], [11, 14], [15, 18], | |||
| [15, 18], [15, 18]], | |||
| [[21, 24], [21, 24], [25, 28], [25, 28], [25, 28]]]]).astype(np.int32)) | |||
| np.testing.assert_array_equal( | |||
| output_corners_aligned.asnumpy(), expected_output.asnumpy()) | |||
| np.testing.assert_raises(AssertionError, np.testing.assert_array_equal, | |||
| output.asnumpy(), expected_output.asnumpy()) | |||
| def test_resize_nn_grayscale_integer_ratio_half(): | |||
| resize_nn_grayscale_integer_ratio(np.float16) | |||
| def test_resize_nn_grayscale_integer_ratio_float(): | |||
| resize_nn_grayscale_integer_ratio(np.float32) | |||
| def test_resize_nn_grayscale_not_integer_ratio_half(): | |||
| resize_nn_grayscale_not_integer_ratio(np.float16) | |||
| def test_resize_nn_grayscale_not_integer_ratio_float(): | |||
| resize_nn_grayscale_not_integer_ratio(np.float32) | |||
| def test_resize_nn_grayscale_multiple_half(): | |||
| resize_nn_grayscale_multiple_images(np.float16) | |||
| def test_resize_nn_grayscale_multiple_float(): | |||
| resize_nn_grayscale_multiple_images(np.float32) | |||
| def test_resize_nn_grayscale_align_corners_half(): | |||
| resize_nn_grayscale_align_corners(np.float16) | |||
| def test_resize_nn_grayscale_align_corners_float(): | |||
| resize_nn_grayscale_align_corners(np.float32) | |||
| if __name__ == "__main__": | |||
| test_resize_nn_grayscale_integer_ratio_half() | |||
| test_resize_nn_grayscale_integer_ratio_float() | |||
| test_resize_nn_grayscale_not_integer_ratio_half() | |||
| test_resize_nn_grayscale_not_integer_ratio_float() | |||
| test_resize_nn_grayscale_multiple_half() | |||
| test_resize_nn_grayscale_multiple_float() | |||
| test_resize_nn_grayscale_align_corners_half() | |||
| test_resize_nn_grayscale_align_corners_float() | |||
| test_resize_nn_rgb_integer_ratio() | |||
| test_resize_nn_rgb_not_integer_ratio() | |||
| test_resize_nn_rgb_multiple() | |||
| test_resize_nn_rgb_align_corners() | |||