|
|
|
@@ -634,6 +634,12 @@ class Conv2D(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> input = Tensor(np.ones([10, 32, 32, 32]), mindspore.float32) |
|
|
|
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) |
|
|
|
>>> conv2d = P.Conv2D(out_channel=32, kernel_size=3) |
|
|
|
>>> conv2d(input, weight) |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -1090,6 +1096,13 @@ class Conv2DBackpropInput(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, the gradients of convolution. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> dout = Tensor(np.ones([10, 32, 30, 30]), mindspore.float32) |
|
|
|
>>> weight = Tensor(np.ones([32, 32, 3, 3]), mindspore.float32) |
|
|
|
>>> x = Tensor(np.ones([10, 32, 32, 32])) |
|
|
|
>>> conv2d_backprop_input = P.Conv2DBackpropInput(out_channel=32, kernel_size=3) |
|
|
|
>>> conv2d_backprop_input(dout, weight, F.shape(x)) |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -1262,6 +1275,9 @@ class SoftmaxCrossEntropyWithLogits(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tuple of 2 Tensor, the loss shape is `(N,)`, and the dlogits with the same shape as `logits`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code. |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -1306,6 +1322,9 @@ class SparseSoftmaxCrossEntropyWithLogits(PrimitiveWithInfer): |
|
|
|
Outputs: |
|
|
|
Tensor, if `is_grad` is False, the output tensor is the value of loss which is a scalar tensor; |
|
|
|
if `is_grad` is True, the output tensor is the gradient of input with the same shape as `logits`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
Please refer to the usage in nn.SoftmaxCrossEntropyWithLogits source code. |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -2117,6 +2136,12 @@ class SigmoidCrossEntropyWithLogits(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, with the same shape and type as input `logits`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> logits = Tensor(np.random.randn(2, 3).astype(np.float16)) |
|
|
|
>>> labels = Tensor(np.random.randn(2, 3).astype(np.float16)) |
|
|
|
>>> sigmoid = P.SigmoidCrossEntropyWithLogits() |
|
|
|
>>> sigmoid(logits, labels) |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
@@ -2471,6 +2496,14 @@ class SparseApplyAdagrad(PrimitiveWithInfer): |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor, has the same shape and type as `var`. |
|
|
|
|
|
|
|
Examples: |
|
|
|
var = Tensor(np.random.random((3, 3)), mindspore.float32) |
|
|
|
accum = Tensor(np.random.random((3, 3)), mindspore.float32) |
|
|
|
grad = Tensor(np.random.random((3, 3)), mindspore.float32) |
|
|
|
indices = Tensor(np.ones((3,), np.int32)) |
|
|
|
sparse_apply_ada_grad = P.SparseApplyAdagrad(0.5) |
|
|
|
sparse_apply_ada_grad(var, accum, grad, indices) |
|
|
|
""" |
|
|
|
|
|
|
|
@prim_attr_register |
|
|
|
|