| @@ -3,8 +3,8 @@ __constant sampler_t smp_none = CLK_NORMALIZED_COORDS_FALSE | CLK_ADDRESS_CLAMP | |||
| #define UP_DIV(x, y) (((x) + (y) - (1)) / (y)) | |||
| #define C4NUM 4 | |||
| __kernel void ComputeMeanVarDim1NHWC4(__read_only image2d_t src_data, __global FLT *mean_, __global FLT *variance_, | |||
| int4 in_shape, int normalized_shape_size) { | |||
| __kernel void ComputeMeanVarAxis3NHWC4(__read_only image2d_t src_data, __global FLT *mean_, __global FLT *variance_, | |||
| int4 in_shape, int normalized_shape_size) { | |||
| int X = get_global_id(0); // n*h | |||
| int Y = get_global_id(1); // w | |||
| if (X > in_shape.x * in_shape.y || Y > in_shape.z || in_shape.y == 0 || normalized_shape_size == 0) { | |||
| @@ -50,15 +50,14 @@ __kernel void ComputeMeanVarDim1NHWC4(__read_only image2d_t src_data, __global F | |||
| var = (var_temp.x + var_temp.y + var_temp.z + var_temp.w) / normalized_shape_size; | |||
| // write result to dst | |||
| int postion = (n * in_shape.y + h) * in_shape.z + w; | |||
| mean_[postion] = mean; | |||
| variance_[postion] = var; | |||
| int position = (n * in_shape.y + h) * in_shape.z + w; | |||
| mean_[position] = mean; | |||
| variance_[position] = var; | |||
| } | |||
| __kernel void LayerNormalization_NHWC4(__read_only image2d_t src_data, __write_only image2d_t dst_data, | |||
| __global FLT *mean_, __global FLT *variance_, __global FLT *gamma_, | |||
| __global FLT *beta_, int4 in_shape, float epsilon_, int normalized_dims_, | |||
| int elementwise_affine_) { | |||
| __global FLT *beta_, int4 in_shape, float epsilon_, int begin_params_axis_) { | |||
| int X = get_global_id(0); // n*h | |||
| int Y = get_global_id(1); // w | |||
| int Z = get_global_id(2); // c4 | |||
| @@ -72,32 +71,25 @@ __kernel void LayerNormalization_NHWC4(__read_only image2d_t src_data, __write_o | |||
| int ci4 = UP_DIV(in_shape.w, C4NUM); | |||
| int postion_mv = 0; | |||
| int postion_gb = 0; | |||
| if (normalized_dims_ == 1) { | |||
| postion_mv = (n * in_shape.y + h) * in_shape.z + w; | |||
| postion_gb = c * C4NUM; | |||
| } else if (normalized_dims_ == 2) { | |||
| postion_mv = n * in_shape.y + h; | |||
| postion_gb = w * ci4 * C4NUM + c * C4NUM; | |||
| } else if (normalized_dims_ == 3) { | |||
| if (begin_params_axis_ == 1) { | |||
| postion_mv = n; | |||
| postion_gb = (h * in_shape.z + w) * ci4 * C4NUM + c * C4NUM; | |||
| } else if (begin_params_axis_ == 2) { | |||
| postion_mv = n * in_shape.y + h; | |||
| postion_gb = w * ci4 * C4NUM + c * C4NUM; | |||
| } else if (begin_params_axis_ == 3) { | |||
| postion_mv = (n * in_shape.y + h) * in_shape.z + w; | |||
| postion_gb = c * C4NUM; | |||
| } | |||
| FLT4 result = {0.0f, 0.0f, 0.0f, 0.0f}; | |||
| FLT4 result_in = READ_IMAGE(src_data, smp_none, (int2)(w * ci4 + c, n * in_shape.y + h)); | |||
| if (elementwise_affine_) { | |||
| result.x = ((result_in.x - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb] + | |||
| beta_[postion_gb]; | |||
| result.y = ((result_in.y - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 1] + | |||
| beta_[postion_gb + 1]; | |||
| result.z = ((result_in.z - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 2] + | |||
| beta_[postion_gb + 2]; | |||
| result.w = ((result_in.w - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 3] + | |||
| beta_[postion_gb + 3]; | |||
| } else { | |||
| result.x = ((result_in.x - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)); | |||
| result.y = ((result_in.y - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)); | |||
| result.z = ((result_in.z - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)); | |||
| result.w = ((result_in.w - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)); | |||
| } | |||
| result.x = ((result_in.x - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb] + | |||
| beta_[postion_gb]; | |||
| result.y = ((result_in.y - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 1] + | |||
| beta_[postion_gb + 1]; | |||
| result.z = ((result_in.z - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 2] + | |||
| beta_[postion_gb + 2]; | |||
| result.w = ((result_in.w - mean_[postion_mv]) / sqrt(variance_[postion_mv] + epsilon_)) * gamma_[postion_gb + 3] + | |||
| beta_[postion_gb + 3]; | |||
| WRITE_IMAGE(dst_data, (int2)((w * ci4 + c), (n * in_shape.y + h)), result); | |||
| } | |||
| @@ -106,7 +106,7 @@ struct FusionEltwiseParameter { | |||
| Node_(bool is_leaf, FusionEltwiseParameter *value, std::string value_name) | |||
| : is_leaf_(is_leaf), value_(value), name_(std::move(value_name)) {} | |||
| }; | |||
| OpParameter op_parameter_{}; | |||
| OpParameter op_parameter_{"FusionEltwiseParameter", PrimitiveType_FusionEltwise, 1}; | |||
| EltwiseOperator operator_; | |||
| std::string name_; | |||
| std::vector<Node_> inputs_; | |||
| @@ -115,8 +115,6 @@ struct FusionEltwiseParameter { | |||
| const std::vector<lite::Tensor *> &in_tensors, | |||
| const std::map<lite::Tensor *, FusionEltwiseParameter *> &replace_map = {}) | |||
| : operator_(operator_init), name_(std::move(kernel_name)) { | |||
| op_parameter_.type_ = PrimitiveType_FusionEltwise; | |||
| snprintf(op_parameter_.name_, strlen("FusionEltwiseParameter"), "FusionEltwiseParameter"); | |||
| for (int i = 0; i < in_tensors.size(); ++i) { | |||
| auto *in_tensor = in_tensors[i]; | |||
| if (replace_map.count(in_tensor)) { | |||
| @@ -33,13 +33,22 @@ namespace mindspore::kernel { | |||
| int LayerNormOpenCLKernel::CheckSpecs() { | |||
| auto param = reinterpret_cast<LayerNormParameter *>(this->op_parameter_); | |||
| if (in_tensors_.at(0)->shape().size() != 4 || out_tensors_.size() != 1) { | |||
| MS_LOG(ERROR) << "UnSupported in_tensors_.shape.size: " << in_tensors_.at(0)->shape().size() | |||
| if (in_tensors_.size() != 3 || out_tensors_.size() != 1) { | |||
| MS_LOG(ERROR) << "UnSupported in_tensors_.size: " << in_tensors_.size() | |||
| << " out_tensors_.size(): " << out_tensors_.size(); | |||
| return RET_ERROR; | |||
| } | |||
| if (param->normalized_dims_ != 1) { | |||
| MS_LOG(ERROR) << "UnSupported normalized_shape_ size: " << param->normalized_dims_; | |||
| if (in_tensors_.at(0)->shape().size() != 4) { | |||
| MS_LOG(ERROR) << "UnSupported in_tensors_.shape.size: " << in_tensors_.at(0)->shape().size(); | |||
| return RET_ERROR; | |||
| } | |||
| normalized_axis_ = param->begin_params_axis_; | |||
| epsilon_ = param->epsilon_; | |||
| if (normalized_axis_ < 0) { | |||
| normalized_axis_ += in_tensors_.at(0)->shape().size(); | |||
| } | |||
| if (normalized_axis_ != 3) { | |||
| MS_LOG(ERROR) << "UnSupported normalized_axis_ : " << param->normalized_dims_; | |||
| return RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| @@ -61,15 +70,11 @@ void LayerNormGetWorkGroup(const std::vector<size_t> &global, std::vector<size_t | |||
| void LayerNormOpenCLKernel::SetConstArgs() { | |||
| int arg_cn = 6; | |||
| GpuTensorInfo img_info(in_tensors_.at(0)); | |||
| in_shape_.s[0] = img_info.N, in_shape_.s[1] = img_info.H, in_shape_.s[2] = img_info.W, in_shape_.s[3] = img_info.C; | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, in_shape_); | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, epsilon_); | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, normalized_dims_); | |||
| if (elementwise_affine_) { | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, 1); | |||
| } else { | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, 0); | |||
| } | |||
| ocl_runtime_->SetKernelArg(kernel_, arg_cn++, normalized_axis_); | |||
| ocl_runtime_->SetKernelArg(kernel_mean_var_, 3, in_shape_); | |||
| ocl_runtime_->SetKernelArg(kernel_mean_var_, 4, normalized_shape_size_); | |||
| } | |||
| @@ -91,32 +96,13 @@ void LayerNormOpenCLKernel::SetGlobalLocal() { | |||
| const std::vector<size_t> &max_global = ocl_runtime_->GetWorkItemSize(); | |||
| LayerNormGetWorkGroup(global_size_, &local_size_, max_global[0]); | |||
| OpenCLKernel::AlignGlobalLocal(global_size_, local_size_); | |||
| if (normalized_dims_ != in_tensors_.at(0)->shape().size()) { | |||
| if (normalized_dims_ == 1) { | |||
| OH = in_shape_.s[0] * in_shape_.s[1]; | |||
| OW = in_shape_.s[2]; | |||
| OC = 1; | |||
| } else if (normalized_dims_ == 2) { | |||
| OH = in_shape_.s[0] * in_shape_.s[1]; | |||
| OW = 1; | |||
| OC = 1; | |||
| } else { | |||
| OH = in_shape_.s[0]; | |||
| OW = 1; | |||
| OC = 1; | |||
| } | |||
| } else { | |||
| OH = 1; | |||
| OW = 1; | |||
| OC = 1; | |||
| } | |||
| AlignMeanVarGlobalLocal({static_cast<int>(OH), static_cast<int>(OW), static_cast<int>(OC)}, {1, 1, 1}, | |||
| &global_mean_var_, &local_mean_var_); | |||
| AlignMeanVarGlobalLocal({static_cast<int>(OH), static_cast<int>(OW), 1}, {1, 1, 1}, &global_mean_var_, | |||
| &local_mean_var_); | |||
| } | |||
| int LayerNormOpenCLKernel::Initweight() { | |||
| auto allocator = ocl_runtime_->GetAllocator(); | |||
| GpuTensorInfo img_info(in_tensors_.at(1)); // gamma | |||
| GpuTensorInfo img_info(in_tensors_.at(1)); | |||
| auto weight_tensor = in_tensors_.at(1); | |||
| size_t weight_size = img_info.Image2DSize; | |||
| // allocated memory for weight and init value | |||
| @@ -165,40 +151,28 @@ int LayerNormOpenCLKernel::Initweight() { | |||
| int LayerNormOpenCLKernel::Prepare() { | |||
| use_fp16_enable_ = ocl_runtime_->GetFp16Enable(); | |||
| auto param = reinterpret_cast<LayerNormParameter *>(this->op_parameter_); | |||
| elementwise_affine_ = true; // param->elementwise_mode_; | |||
| normalized_dims_ = param->normalized_dims_; | |||
| epsilon_ = param->epsilon_; | |||
| if (elementwise_affine_) { | |||
| int ret = Initweight(); | |||
| if (ret) { | |||
| MS_LOG(ERROR) << "Initweight failed "; | |||
| return RET_ERROR; | |||
| } | |||
| int ret = Initweight(); | |||
| if (ret) { | |||
| MS_LOG(ERROR) << "Initweight failed "; | |||
| return RET_ERROR; | |||
| } | |||
| normalized_shape_size_ = in_tensors_.at(0)->shape().at(normalized_axis_); | |||
| auto allocator = ocl_runtime_->GetAllocator(); | |||
| size_t mean_size = 1; | |||
| size_t size = in_tensors_.at(0)->shape().size() - normalized_dims_; | |||
| for (int i = 0; i < size; ++i) { | |||
| for (int i = 0; i < normalized_axis_; ++i) { | |||
| mean_size *= in_tensors_.at(0)->shape()[i]; | |||
| } | |||
| size_t size_dtype = use_fp16_enable_ ? sizeof(float16_t) : sizeof(float); | |||
| mean_size *= size_dtype; | |||
| mean_ = allocator->Malloc(mean_size); | |||
| var_ = allocator->Malloc(mean_size); | |||
| GpuTensorInfo img_info(in_tensors_.at(0)); | |||
| in_shape_.s[0] = img_info.N, in_shape_.s[1] = img_info.H, in_shape_.s[2] = img_info.W, in_shape_.s[3] = img_info.C; | |||
| for (int i = 0; i < normalized_dims_; ++i) { | |||
| normalized_shape_size_ *= param->normalized_shape_[i]; | |||
| } | |||
| std::string kernel_name = "LayerNormalization_NHWC4"; | |||
| std::string kernel_name_mean_var = "ComputeMeanVar"; | |||
| std::string source = layer_norm_source; | |||
| std::string program_name = "LayerNormalization"; | |||
| ocl_runtime_->LoadSource(program_name, source); | |||
| ocl_runtime_->BuildKernel(kernel_, program_name, kernel_name); | |||
| kernel_name_mean_var += "Dim" + std::to_string(normalized_dims_) + "NHWC4"; | |||
| kernel_name_mean_var += "Axis" + std::to_string(normalized_axis_) + "NHWC4"; | |||
| ocl_runtime_->BuildKernel(kernel_mean_var_, program_name, kernel_name_mean_var); | |||
| MS_LOG(DEBUG) << kernel_name << " Init Done!"; | |||
| SetConstArgs(); | |||
| @@ -48,8 +48,7 @@ class LayerNormOpenCLKernel : public OpenCLKernel { | |||
| void *var_{nullptr}; | |||
| void *beta_{nullptr}; | |||
| cl_int4 in_shape_{}; | |||
| int elementwise_affine_; | |||
| int32_t normalized_dims_{1}; | |||
| int32_t normalized_axis_{3}; // default is C | |||
| int normalized_shape_size_{1}; | |||
| float epsilon_{0.0f}; | |||
| cl::Kernel kernel_; | |||
| @@ -22,20 +22,19 @@ class TestOpenCL_LayerNorm : public CommonTest {}; | |||
| namespace { | |||
| // PrimitiveType_Stack: src/ops/populate/stack_populate.cc | |||
| OpParameter *CreateParameter(float epsilon, int normalized_dims_, std::vector<int> normalizedShape) { | |||
| OpParameter *CreateParameter(float epsilon, int begin_norm_axis_, int begin_param_axis_) { | |||
| auto *param = test::CreateParameter<LayerNormParameter>(schema::PrimitiveType_LayerNorm); | |||
| param->epsilon_ = epsilon; | |||
| param->normalized_dims_ = normalized_dims_; | |||
| for (int i = 0; i < normalizedShape.size() && i < normalized_dims_; ++i) { | |||
| param->normalized_shape_[i] = normalizedShape[i]; | |||
| } | |||
| param->begin_norm_axis_ = begin_norm_axis_; | |||
| param->begin_params_axis_ = begin_param_axis_; | |||
| return reinterpret_cast<OpParameter *>(param); | |||
| } | |||
| } // namespace | |||
| TEST_F(TestOpenCL_LayerNorm, test1) { | |||
| float epsilon = 1e-5; | |||
| int normalized_dims_ = 1; | |||
| int begin_norm_axis_ = 3; | |||
| int begin_param_axis_ = 3; | |||
| std::vector<int> normalizedShape = {5}; | |||
| std::vector<int> input_shape = {2, 3, 4, 5}; | |||
| std::vector<int> gamma_shape = {1, 1, 1, 5}; | |||
| @@ -51,11 +50,10 @@ TEST_F(TestOpenCL_LayerNorm, test1) { | |||
| auto beta_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(betaPpath.c_str(), &beta_size)); | |||
| auto output_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(correctOutputPath.c_str(), &output_size)); | |||
| for (auto fp16_enable : {false}) { | |||
| auto *param = CreateParameter(epsilon, normalized_dims_, normalizedShape); | |||
| auto *param = CreateParameter(epsilon, begin_norm_axis_, begin_param_axis_); | |||
| TestMain( | |||
| {{input_shape, input_data, VAR}, {gamma_shape, gamma_data, CONST_TENSOR}, {beta_shape, beta_data, CONST_TENSOR}}, | |||
| {output_shape, output_data}, param, fp16_enable, fp16_enable ? 1e-3 : 1e-6); | |||
| {output_shape, output_data}, param, fp16_enable, fp16_enable ? 1e-3 : 1e-5); | |||
| } | |||
| } | |||
| } // namespace mindspore::lite::opencl::test | |||