Merge pull request !4707 from XunDeng/pp_poc_v3tags/v0.7.0-beta
| @@ -15,6 +15,7 @@ | |||
| """Utitly functions to help distribution class.""" | |||
| import numpy as np | |||
| from mindspore.ops import _utils as utils | |||
| from mindspore.ops.primitive import constexpr | |||
| from mindspore.common.tensor import Tensor | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.common import dtype as mstype | |||
| @@ -23,7 +24,7 @@ from mindspore.ops import composite as C | |||
| import mindspore.nn as nn | |||
| import mindspore.nn.probability as msp | |||
| def cast_to_tensor(t, hint_dtype=mstype.float32): | |||
| def cast_to_tensor(t, hint_type=mstype.float32): | |||
| """ | |||
| Cast an user input value into a Tensor of dtype. | |||
| If the input t is of type Parameter, t is directly returned as a Parameter. | |||
| @@ -38,24 +39,27 @@ def cast_to_tensor(t, hint_dtype=mstype.float32): | |||
| Returns: | |||
| Tensor. | |||
| """ | |||
| if t is None: | |||
| raise ValueError(f'Input cannot be None in cast_to_tensor') | |||
| if isinstance(t, Parameter): | |||
| return t | |||
| t_type = hint_type | |||
| if isinstance(t, Tensor): | |||
| if t.dtype != hint_dtype: | |||
| raise TypeError(f"Input tensor should be type {hint_dtype}.") | |||
| #check if the Tensor in shape of Tensor(4) | |||
| if t.dim() == 0: | |||
| value = t.asnumpy() | |||
| return Tensor([value], dtype=hint_dtype) | |||
| return Tensor([value], dtype=t_type) | |||
| #convert the type of tensor to dtype | |||
| return t | |||
| return Tensor(t.asnumpy(), dtype=t_type) | |||
| if isinstance(t, (list, np.ndarray)): | |||
| return Tensor(t, dtype=hint_dtype) | |||
| if np.isscalar(t): | |||
| return Tensor([t], dtype=hint_dtype) | |||
| raise RuntimeError("Input type is not supported.") | |||
| def convert_to_batch(t, batch_shape, hint_dtype): | |||
| return Tensor(t, dtype=t_type) | |||
| if isinstance(t, bool): | |||
| raise TypeError(f'Input cannot be Type Bool') | |||
| if isinstance(t, (int, float)): | |||
| return Tensor([t], dtype=t_type) | |||
| raise TypeError("Input type is not supported.") | |||
| def convert_to_batch(t, batch_shape, required_type): | |||
| """ | |||
| Convert a Tensor to a given batch shape. | |||
| @@ -72,8 +76,8 @@ def convert_to_batch(t, batch_shape, hint_dtype): | |||
| """ | |||
| if isinstance(t, Parameter): | |||
| return t | |||
| t = cast_to_tensor(t, hint_dtype) | |||
| return Tensor(np.broadcast_to(t.asnumpy(), batch_shape), dtype=hint_dtype) | |||
| t = cast_to_tensor(t, required_type) | |||
| return Tensor(np.broadcast_to(t.asnumpy(), batch_shape), dtype=required_type) | |||
| def check_scalar_from_param(params): | |||
| """ | |||
| @@ -91,7 +95,7 @@ def check_scalar_from_param(params): | |||
| return False | |||
| if isinstance(value, (str, type(params['dtype']))): | |||
| continue | |||
| elif np.isscalar(value): | |||
| elif isinstance(value, (int, float)): | |||
| continue | |||
| else: | |||
| return False | |||
| @@ -119,10 +123,11 @@ def calc_broadcast_shape_from_param(params): | |||
| if isinstance(value, Parameter): | |||
| value_t = value.default_input | |||
| else: | |||
| value_t = cast_to_tensor(value, params['dtype']) | |||
| value_t = cast_to_tensor(value, mstype.float32) | |||
| broadcast_shape = utils.get_broadcast_shape(broadcast_shape, list(value_t.shape), params['name']) | |||
| return tuple(broadcast_shape) | |||
| def check_greater_equal_zero(value, name): | |||
| """ | |||
| Check if the given Tensor is greater zero. | |||
| @@ -155,14 +160,17 @@ def check_greater_zero(value, name): | |||
| ValueError: if the input value is less than or equal to zero. | |||
| """ | |||
| if value is None: | |||
| raise ValueError(f'input value cannot be None in check_greater_zero') | |||
| if isinstance(value, Parameter): | |||
| if isinstance(value.default_input, MetaTensor): | |||
| if not isinstance(value.default_input, Tensor): | |||
| return | |||
| value = value.default_input | |||
| comp = np.less(np.zeros(value.shape), value.asnumpy()) | |||
| if not comp.all(): | |||
| raise ValueError(f'{name} should be greater than zero.') | |||
| def check_greater(a, b, name_a, name_b): | |||
| """ | |||
| Check if Tensor b is strictly greater than Tensor a. | |||
| @@ -176,6 +184,8 @@ def check_greater(a, b, name_a, name_b): | |||
| Raises: | |||
| ValueError: if b is less than or equal to a | |||
| """ | |||
| if a is None or b is None: | |||
| raise ValueError(f'input value cannot be None in check_greater') | |||
| if isinstance(a, Parameter) or isinstance(b, Parameter): | |||
| return | |||
| comp = np.less(a.asnumpy(), b.asnumpy()) | |||
| @@ -193,6 +203,8 @@ def check_prob(p): | |||
| Raises: | |||
| ValueError: if p is not a proper probability. | |||
| """ | |||
| if p is None: | |||
| raise ValueError(f'input value cannot be None in check_greater_zero') | |||
| if isinstance(p, Parameter): | |||
| if not isinstance(p.default_input, Tensor): | |||
| return | |||
| @@ -259,3 +271,12 @@ def check_tensor_type(name, inputs, valid_type): | |||
| def check_type(data_type, value_type, name): | |||
| if not data_type in value_type: | |||
| raise TypeError(f"For {name}, valid type include {value_type}, {data_type} is invalid") | |||
| @constexpr | |||
| def raise_none_error(name): | |||
| raise ValueError(f"{name} should be specified. Value cannot be None") | |||
| @constexpr | |||
| def check_distribution_name(name, expected_name): | |||
| if name != expected_name: | |||
| raise ValueError(f"Distribution should be {expected_name}.") | |||
| @@ -17,7 +17,7 @@ from mindspore.common import dtype as mstype | |||
| from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_prob, check_type | |||
| from ._utils.utils import cast_to_tensor, check_prob, check_type, check_distribution_name, raise_none_error | |||
| class Bernoulli(Distribution): | |||
| """ | |||
| @@ -99,8 +99,9 @@ class Bernoulli(Distribution): | |||
| valid_dtype = mstype.int_type + mstype.uint_type | |||
| check_type(dtype, valid_dtype, "Bernoulli") | |||
| super(Bernoulli, self).__init__(seed, dtype, name, param) | |||
| self.parameter_type = mstype.float32 | |||
| if probs is not None: | |||
| self._probs = cast_to_tensor(probs, hint_dtype=mstype.float32) | |||
| self._probs = cast_to_tensor(probs, mstype.float32) | |||
| check_prob(self.probs) | |||
| else: | |||
| self._probs = probs | |||
| @@ -111,6 +112,7 @@ class Bernoulli(Distribution): | |||
| self.dtypeop = P.DType() | |||
| self.erf = P.Erf() | |||
| self.exp = P.Exp() | |||
| self.floor = P.Floor() | |||
| self.fill = P.Fill() | |||
| self.log = P.Log() | |||
| self.less = P.Less() | |||
| @@ -139,14 +141,19 @@ class Bernoulli(Distribution): | |||
| .. math:: | |||
| MEAN(B) = probs1 | |||
| """ | |||
| return self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| return probs1 | |||
| def _mode(self, probs1=None): | |||
| r""" | |||
| .. math:: | |||
| MODE(B) = 1 if probs1 > 0.5 else = 0 | |||
| """ | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| prob_type = self.dtypeop(probs1) | |||
| zeros = self.fill(prob_type, self.shape(probs1), 0.0) | |||
| ones = self.fill(prob_type, self.shape(probs1), 1.0) | |||
| @@ -158,7 +165,9 @@ class Bernoulli(Distribution): | |||
| .. math:: | |||
| VAR(B) = probs1 * probs0 | |||
| """ | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| probs0 = 1.0 - probs1 | |||
| return self.exp(self.log(probs0) + self.log(probs1)) | |||
| @@ -167,7 +176,9 @@ class Bernoulli(Distribution): | |||
| .. math:: | |||
| H(B) = -probs0 * \log(probs0) - probs1 * \log(probs1) | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| probs0 = 1 - probs1 | |||
| return -1 * (probs0 * self.log(probs0)) - (probs1 * self.log(probs1)) | |||
| @@ -180,9 +191,8 @@ class Bernoulli(Distribution): | |||
| probs1_b (Tensor): probs1 of distribution b. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self.probs. | |||
| """ | |||
| if dist == 'Bernoulli': | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(dist, probs1_b, probs1_a) | |||
| return None | |||
| check_distribution_name(dist, 'Bernoulli') | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(dist, probs1_b, probs1_a) | |||
| def _log_prob(self, value, probs=None): | |||
| r""" | |||
| @@ -196,7 +206,13 @@ class Bernoulli(Distribution): | |||
| pmf(k) = probs1 if k = 1; | |||
| pmf(k) = probs0 if k = 0; | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, mstype.float32) | |||
| value = self.floor(value) | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| probs0 = 1.0 - probs1 | |||
| return self.log(probs1) * value + self.log(probs0) * (1.0 - value) | |||
| @@ -213,7 +229,13 @@ class Bernoulli(Distribution): | |||
| cdf(k) = probs0 if 0 <= k <1; | |||
| cdf(k) = 1 if k >=1; | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, mstype.float32) | |||
| value = self.floor(value) | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| prob_type = self.dtypeop(probs1) | |||
| value = value * self.fill(prob_type, self.shape(probs1), 1.0) | |||
| probs0 = 1.0 - probs1 * self.fill(prob_type, self.shape(value), 1.0) | |||
| @@ -230,19 +252,23 @@ class Bernoulli(Distribution): | |||
| Args: | |||
| dist (str): type of the distributions. Should be "Bernoulli" in this case. | |||
| probs1_b (Tensor): probs1 of distribution b. | |||
| probs1_a (Tensor): probs1 of distribution a. Default: self.probs. | |||
| probs1_b (Tensor, Number): probs1 of distribution b. | |||
| probs1_a (Tensor, Number): probs1 of distribution a. Default: self.probs. | |||
| .. math:: | |||
| KL(a||b) = probs1_a * \log(\frac{probs1_a}{probs1_b}) + | |||
| probs0_a * \log(\frac{probs0_a}{probs0_b}) | |||
| """ | |||
| if dist == 'Bernoulli': | |||
| probs1_a = self.probs if probs1_a is None else probs1_a | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return probs1_a * self.log(probs1_a / probs1_b) + probs0_a * self.log(probs0_a / probs0_b) | |||
| return None | |||
| check_distribution_name(dist, 'Bernoulli') | |||
| if probs1_b is None: | |||
| raise_none_error("probs1_b") | |||
| probs1_b = self.cast(probs1_b, self.parameter_type) | |||
| probs1_a = self.cast(probs1_a, self.parameter_type) if probs1_a is not None else self.probs | |||
| if probs1_a is None: | |||
| raise_none_error("probs1_a") | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return probs1_a * self.log(probs1_a / probs1_b) + probs0_a * self.log(probs0_a / probs0_b) | |||
| def _sample(self, shape=(), probs=None): | |||
| """ | |||
| @@ -250,12 +276,14 @@ class Bernoulli(Distribution): | |||
| Args: | |||
| shape (tuple): shape of the sample. Default: (). | |||
| probs (Tensor): probs1 of the samples. Default: self.probs. | |||
| probs (Tensor, Number): probs1 of the samples. Default: self.probs. | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| l_zero = self.const(0.0) | |||
| h_one = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + self.shape(probs1), l_zero, h_one, self.seed) | |||
| @@ -18,7 +18,8 @@ from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from mindspore.common import dtype as mstype | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_greater_zero, check_type | |||
| from ._utils.utils import cast_to_tensor, check_greater_zero, check_type, check_distribution_name,\ | |||
| raise_none_error | |||
| class Exponential(Distribution): | |||
| """ | |||
| @@ -100,8 +101,9 @@ class Exponential(Distribution): | |||
| valid_dtype = mstype.float_type | |||
| check_type(dtype, valid_dtype, "Exponential") | |||
| super(Exponential, self).__init__(seed, dtype, name, param) | |||
| self.parameter_type = dtype | |||
| if rate is not None: | |||
| self._rate = cast_to_tensor(rate, dtype) | |||
| self._rate = cast_to_tensor(rate, self.parameter_type) | |||
| check_greater_zero(self._rate, "rate") | |||
| else: | |||
| self._rate = rate | |||
| @@ -141,16 +143,19 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| MEAN(EXP) = \frac{1.0}{\lambda}. | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| return 1.0 / rate | |||
| def _mode(self, rate=None): | |||
| r""" | |||
| .. math:: | |||
| MODE(EXP) = 0. | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| return self.fill(self.dtype, self.shape(rate), 0.) | |||
| def _sd(self, rate=None): | |||
| @@ -158,7 +163,9 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| sd(EXP) = \frac{1.0}{\lambda}. | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| return 1.0 / rate | |||
| def _entropy(self, rate=None): | |||
| @@ -166,7 +173,9 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| H(Exp) = 1 - \log(\lambda). | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| return 1.0 - self.log(rate) | |||
| @@ -179,9 +188,9 @@ class Exponential(Distribution): | |||
| rate_b (Tensor): rate of distribution b. | |||
| rate_a (Tensor): rate of distribution a. Default: self.rate. | |||
| """ | |||
| if dist == 'Exponential': | |||
| return self._entropy(rate=rate_a) + self._kl_loss(dist, rate_b, rate_a) | |||
| return None | |||
| check_distribution_name(dist, 'Exponential') | |||
| return self._entropy(rate=rate_a) + self._kl_loss(dist, rate_b, rate_a) | |||
| def _prob(self, value, rate=None): | |||
| r""" | |||
| @@ -198,7 +207,12 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| pdf(x) = rate * \exp(-1 * \lambda * x) if x >= 0 else 0 | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| prob = self.exp(self.log(rate) - rate * value) | |||
| zeros = self.fill(self.dtypeop(prob), self.shape(prob), 0.0) | |||
| comp = self.less(value, zeros) | |||
| @@ -218,7 +232,12 @@ class Exponential(Distribution): | |||
| .. math:: | |||
| cdf(x) = 1.0 - \exp(-1 * \lambda * x) if x >= 0 else 0 | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| cdf = 1.0 - self.exp(-1. * rate * value) | |||
| zeros = self.fill(self.dtypeop(cdf), self.shape(cdf), 0.0) | |||
| comp = self.less(value, zeros) | |||
| @@ -234,10 +253,14 @@ class Exponential(Distribution): | |||
| rate_b (Tensor): rate of distribution b. | |||
| rate_a (Tensor): rate of distribution a. Default: self.rate. | |||
| """ | |||
| if dist == 'Exponential': | |||
| rate_a = self.rate if rate_a is None else rate_a | |||
| return self.log(rate_a) - self.log(rate_b) + rate_b / rate_a - 1.0 | |||
| return None | |||
| check_distribution_name(dist, 'Exponential') | |||
| if rate_b is None: | |||
| raise_none_error("rate_b") | |||
| rate_b = self.cast(rate_b, self.parameter_type) | |||
| rate_a = self.cast(rate_a, self.parameter_type) if rate_a is not None else self.rate | |||
| if rate_a is None: | |||
| raise_none_error("rate_a") | |||
| return self.log(rate_a) - self.log(rate_b) + rate_b / rate_a - 1.0 | |||
| def _sample(self, shape=(), rate=None): | |||
| """ | |||
| @@ -250,7 +273,9 @@ class Exponential(Distribution): | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| rate = self.rate if rate is None else rate | |||
| rate = self.cast(rate, self.parameter_type) if rate is not None else self.rate | |||
| if rate is None: | |||
| raise_none_error("rate") | |||
| minval = self.const(self.minval) | |||
| maxval = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + self.shape(rate), minval, maxval, self.seed) | |||
| @@ -18,7 +18,8 @@ from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from mindspore.common import dtype as mstype | |||
| from .distribution import Distribution | |||
| from ._utils.utils import cast_to_tensor, check_prob, check_type | |||
| from ._utils.utils import cast_to_tensor, check_prob, check_type, check_distribution_name,\ | |||
| raise_none_error | |||
| class Geometric(Distribution): | |||
| """ | |||
| @@ -101,8 +102,9 @@ class Geometric(Distribution): | |||
| valid_dtype = mstype.int_type + mstype.uint_type | |||
| check_type(dtype, valid_dtype, "Geometric") | |||
| super(Geometric, self).__init__(seed, dtype, name, param) | |||
| self.parameter_type = mstype.float32 | |||
| if probs is not None: | |||
| self._probs = cast_to_tensor(probs, hint_dtype=mstype.float32) | |||
| self._probs = cast_to_tensor(probs, self.parameter_type) | |||
| check_prob(self._probs) | |||
| else: | |||
| self._probs = probs | |||
| @@ -145,7 +147,9 @@ class Geometric(Distribution): | |||
| .. math:: | |||
| MEAN(Geo) = \fratc{1 - probs1}{probs1} | |||
| """ | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| return (1. - probs1) / probs1 | |||
| def _mode(self, probs1=None): | |||
| @@ -153,7 +157,9 @@ class Geometric(Distribution): | |||
| .. math:: | |||
| MODE(Geo) = 0 | |||
| """ | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| return self.fill(self.dtypeop(probs1), self.shape(probs1), 0.) | |||
| def _var(self, probs1=None): | |||
| @@ -161,7 +167,9 @@ class Geometric(Distribution): | |||
| .. math:: | |||
| VAR(Geo) = \frac{1 - probs1}{probs1 ^ {2}} | |||
| """ | |||
| probs1 = self.probs if probs1 is None else probs1 | |||
| probs1 = self.cast(probs1, self.parameter_type) if probs1 is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs1") | |||
| return (1.0 - probs1) / self.sq(probs1) | |||
| def _entropy(self, probs=None): | |||
| @@ -169,7 +177,9 @@ class Geometric(Distribution): | |||
| .. math:: | |||
| H(Geo) = \frac{-1 * probs0 \log_2 (1-probs0)\ - prob1 * \log_2 (1-probs1)\ }{probs1} | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| probs0 = 1.0 - probs1 | |||
| return (-probs0 * self.log(probs0) - probs1 * self.log(probs1)) / probs1 | |||
| @@ -182,9 +192,8 @@ class Geometric(Distribution): | |||
| probs1_b (Tensor): probability of success of distribution b. | |||
| probs1_a (Tensor): probability of success of distribution a. Default: self.probs. | |||
| """ | |||
| if dist == 'Geometric': | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(dist, probs1_b, probs1_a) | |||
| return None | |||
| check_distribution_name(dist, 'Geometric') | |||
| return self._entropy(probs=probs1_a) + self._kl_loss(dist, probs1_b, probs1_a) | |||
| def _prob(self, value, probs=None): | |||
| r""" | |||
| @@ -198,14 +207,13 @@ class Geometric(Distribution): | |||
| pmf(k) = probs0 ^k * probs1 if k >= 0; | |||
| pmf(k) = 0 if k < 0. | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| dtype = self.dtypeop(value) | |||
| if self.issubclass(dtype, mstype.int_): | |||
| pass | |||
| elif self.issubclass(dtype, mstype.float_): | |||
| value = self.floor(value) | |||
| else: | |||
| return None | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, mstype.float32) | |||
| value = self.floor(value) | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| pmf = self.exp(self.log(1.0 - probs1) * value + self.log(probs1)) | |||
| zeros = self.fill(self.dtypeop(probs1), self.shape(pmf), 0.0) | |||
| comp = self.less(value, zeros) | |||
| @@ -224,15 +232,14 @@ class Geometric(Distribution): | |||
| cdf(k) = 0 if k < 0. | |||
| """ | |||
| probs1 = self.probs if probs is None else probs | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, mstype.float32) | |||
| value = self.floor(value) | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| probs0 = 1.0 - probs1 | |||
| dtype = self.dtypeop(value) | |||
| if self.issubclass(dtype, mstype.int_): | |||
| pass | |||
| elif self.issubclass(dtype, mstype.float_): | |||
| value = self.floor(value) | |||
| else: | |||
| return None | |||
| cdf = 1.0 - self.pow(probs0, value + 1.0) | |||
| zeros = self.fill(self.dtypeop(probs1), self.shape(cdf), 0.0) | |||
| comp = self.less(value, zeros) | |||
| @@ -251,12 +258,16 @@ class Geometric(Distribution): | |||
| .. math:: | |||
| KL(a||b) = \log(\frac{probs1_a}{probs1_b}) + \frac{probs0_a}{probs1_a} * \log(\frac{probs0_a}{probs0_b}) | |||
| """ | |||
| if dist == 'Geometric': | |||
| probs1_a = self.probs if probs1_a is None else probs1_a | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return self.log(probs1_a / probs1_b) + (probs0_a / probs1_a) * self.log(probs0_a / probs0_b) | |||
| return None | |||
| check_distribution_name(dist, 'Geometric') | |||
| if probs1_b is None: | |||
| raise_none_error("probs1_b") | |||
| probs1_b = self.cast(probs1_b, self.parameter_type) | |||
| probs1_a = self.cast(probs1_a, self.parameter_type) if probs1_a is not None else self.probs | |||
| if probs1_a is None: | |||
| raise_none_error("probs1_a") | |||
| probs0_a = 1.0 - probs1_a | |||
| probs0_b = 1.0 - probs1_b | |||
| return self.log(probs1_a / probs1_b) + (probs0_a / probs1_a) * self.log(probs0_a / probs0_b) | |||
| def _sample(self, shape=(), probs=None): | |||
| """ | |||
| @@ -269,9 +280,11 @@ class Geometric(Distribution): | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| probs = self.probs if probs is None else probs | |||
| probs1 = self.cast(probs, self.parameter_type) if probs is not None else self.probs | |||
| if probs1 is None: | |||
| raise_none_error("probs") | |||
| minval = self.const(self.minval) | |||
| maxval = self.const(1.0) | |||
| sample_uniform = self.uniform(shape + self.shape(probs), minval, maxval, self.seed) | |||
| sample = self.floor(self.log(sample_uniform) / self.log(1.0 - probs)) | |||
| sample_uniform = self.uniform(shape + self.shape(probs1), minval, maxval, self.seed) | |||
| sample = self.floor(self.log(sample_uniform) / self.log(1.0 - probs1)) | |||
| return self.cast(sample, self.dtype) | |||
| @@ -18,8 +18,8 @@ from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from mindspore.common import dtype as mstype | |||
| from .distribution import Distribution | |||
| from ._utils.utils import convert_to_batch, check_greater_zero, check_type | |||
| from ._utils.utils import convert_to_batch, check_greater_zero, check_type, check_distribution_name,\ | |||
| raise_none_error | |||
| class Normal(Distribution): | |||
| """ | |||
| @@ -103,9 +103,10 @@ class Normal(Distribution): | |||
| valid_dtype = mstype.float_type | |||
| check_type(dtype, valid_dtype, "Normal") | |||
| super(Normal, self).__init__(seed, dtype, name, param) | |||
| self.parameter_type = dtype | |||
| if mean is not None and sd is not None: | |||
| self._mean_value = convert_to_batch(mean, self.broadcast_shape, dtype) | |||
| self._sd_value = convert_to_batch(sd, self.broadcast_shape, dtype) | |||
| self._mean_value = convert_to_batch(mean, self.broadcast_shape, self.parameter_type) | |||
| self._sd_value = convert_to_batch(sd, self.broadcast_shape, self.parameter_type) | |||
| check_greater_zero(self._sd_value, "Standard deviation") | |||
| else: | |||
| self._mean_value = mean | |||
| @@ -113,6 +114,7 @@ class Normal(Distribution): | |||
| #ops needed for the class | |||
| self.cast = P.Cast() | |||
| self.const = P.ScalarToArray() | |||
| self.erf = P.Erf() | |||
| self.exp = P.Exp() | |||
| @@ -141,31 +143,51 @@ class Normal(Distribution): | |||
| """ | |||
| Mean of the distribution. | |||
| """ | |||
| mean = self._mean_value if mean is None or sd is None else mean | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| return mean | |||
| def _mode(self, mean=None, sd=None): | |||
| """ | |||
| Mode of the distribution. | |||
| """ | |||
| mean = self._mean_value if mean is None or sd is None else mean | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| return mean | |||
| def _sd(self, mean=None, sd=None): | |||
| """ | |||
| Standard deviation of the distribution. | |||
| """ | |||
| sd = self._sd_value if mean is None or sd is None else sd | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| return sd | |||
| def _entropy(self, sd=None): | |||
| def _entropy(self, mean=None, sd=None): | |||
| r""" | |||
| Evaluate entropy. | |||
| .. math:: | |||
| H(X) = \log(\sqrt(numpy.e * 2. * numpy.pi * \sq(\sigma))) | |||
| """ | |||
| sd = self._sd_value if sd is None else sd | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| return self.log(self.sqrt(self.const(np.e * 2. * np.pi))) + self.log(sd) | |||
| def _cross_entropy(self, dist, mean_b, sd_b, mean_a=None, sd_a=None): | |||
| @@ -179,9 +201,8 @@ class Normal(Distribution): | |||
| mean_a (Tensor): mean of distribution a. Default: self._mean_value. | |||
| sd_a (Tensor): standard deviation distribution a. Default: self._sd_value. | |||
| """ | |||
| if dist == 'Normal': | |||
| return self._entropy(sd=sd_a) + self._kl_loss(dist, mean_b, sd_b, mean_a, sd_a) | |||
| return None | |||
| check_distribution_name(dist, 'Normal') | |||
| return self._entropy(mean=mean_a, sd=sd_a) + self._kl_loss(dist, mean_b, sd_b, mean_a, sd_a) | |||
| def _log_prob(self, value, mean=None, sd=None): | |||
| r""" | |||
| @@ -195,10 +216,17 @@ class Normal(Distribution): | |||
| .. math:: | |||
| L(x) = -1* \frac{(x - \mu)^2}{2. * \sigma^2} - \log(\sqrt(2* \pi * \sigma^2)) | |||
| """ | |||
| mean = self._mean_value if mean is None else mean | |||
| sd = self._sd_value if sd is None else sd | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| unnormalized_log_prob = -1. * (self.sq(value - mean)) / (2. * self.sq(sd)) | |||
| neg_normalization = -1. * self.log(self.sqrt(self.const(2. * np.pi))) - self.log(sd) | |||
| neg_normalization = -1. * self.log(self.const(2. * np.pi)) / 2. - self.log(sd) | |||
| return unnormalized_log_prob + neg_normalization | |||
| def _cdf(self, value, mean=None, sd=None): | |||
| @@ -213,8 +241,15 @@ class Normal(Distribution): | |||
| .. math:: | |||
| cdf(x) = 0.5 * (1+ Erf((x - \mu) / ( \sigma * \sqrt(2)))) | |||
| """ | |||
| mean = self._mean_value if mean is None else mean | |||
| sd = self._sd_value if sd is None else sd | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| sqrt2 = self.sqrt(self.const(2.0)) | |||
| adjusted = (value - mean) / (sd * sqrt2) | |||
| return 0.5 * (1.0 + self.erf(adjusted)) | |||
| @@ -234,13 +269,23 @@ class Normal(Distribution): | |||
| KL(a||b) = 0.5 * (\frac{MEAN(a)}{STD(b)} - \frac{MEAN(b)}{STD(b)}) ^ 2 + | |||
| 0.5 * EXPM1(2 * (\log(STD(a)) - \log(STD(b))) - (\log(STD(a)) - \log(STD(b))) | |||
| """ | |||
| if dist == 'Normal': | |||
| mean_a = self._mean_value if mean_a is None else mean_a | |||
| sd_a = self._sd_value if sd_a is None else sd_a | |||
| diff_log_scale = self.log(sd_a) - self.log(sd_b) | |||
| squared_diff = self.sq(mean_a / sd_b - mean_b / sd_b) | |||
| return 0.5 * squared_diff + 0.5 * self.expm1(2 * diff_log_scale) - diff_log_scale | |||
| return None | |||
| check_distribution_name(dist, 'Normal') | |||
| if mean_b is None: | |||
| raise_none_error("mean_b") | |||
| if sd_b is None: | |||
| raise_none_error("sd_b") | |||
| mean_b = self.cast(mean_b, self.parameter_type) | |||
| sd_b = self.cast(sd_b, self.parameter_type) | |||
| mean_a = self.cast(mean_a, self.parameter_type) if mean_a is not None else self._mean_value | |||
| sd_a = self.cast(sd_a, self.parameter_type) if sd_a is not None else self._sd_value | |||
| if mean_a is None: | |||
| raise_none_error("mean_a") | |||
| if sd_a is None: | |||
| raise_none_error("sd_a") | |||
| diff_log_scale = self.log(sd_a) - self.log(sd_b) | |||
| squared_diff = self.sq(mean_a / sd_b - mean_b / sd_b) | |||
| return 0.5 * squared_diff + 0.5 * self.expm1(2 * diff_log_scale) - diff_log_scale | |||
| def _sample(self, shape=(), mean=None, sd=None): | |||
| """ | |||
| @@ -254,8 +299,12 @@ class Normal(Distribution): | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| mean = self._mean_value if mean is None else mean | |||
| sd = self._sd_value if sd is None else sd | |||
| mean = self.cast(mean, self.parameter_type) if mean is not None else self._mean_value | |||
| if mean is None: | |||
| raise_none_error("mean") | |||
| sd = self.cast(sd, self.parameter_type) if sd is not None else self._sd_value | |||
| if sd is None: | |||
| raise_none_error("sd") | |||
| batch_shape = self.shape(self.zeroslike(mean) + self.zeroslike(sd)) | |||
| sample_shape = shape + batch_shape | |||
| sample_norm = C.normal(sample_shape, mean, sd, self.seed) | |||
| @@ -17,7 +17,8 @@ from mindspore.ops import operations as P | |||
| from mindspore.ops import composite as C | |||
| from mindspore.common import dtype as mstype | |||
| from .distribution import Distribution | |||
| from ._utils.utils import convert_to_batch, check_greater, check_type | |||
| from ._utils.utils import convert_to_batch, check_greater, check_type, check_distribution_name,\ | |||
| raise_none_error | |||
| class Uniform(Distribution): | |||
| """ | |||
| @@ -101,6 +102,7 @@ class Uniform(Distribution): | |||
| valid_dtype = mstype.float_type | |||
| check_type(dtype, valid_dtype, "Uniform") | |||
| super(Uniform, self).__init__(seed, dtype, name, param) | |||
| self.parameter_type = dtype | |||
| if low is not None and high is not None: | |||
| self._low = convert_to_batch(low, self.broadcast_shape, dtype) | |||
| self._high = convert_to_batch(high, self.broadcast_shape, dtype) | |||
| @@ -153,8 +155,12 @@ class Uniform(Distribution): | |||
| .. math:: | |||
| range(U) = high -low | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| return high - low | |||
| def _mean(self, low=None, high=None): | |||
| @@ -162,18 +168,25 @@ class Uniform(Distribution): | |||
| .. math:: | |||
| MEAN(U) = \frac{low + high}{2}. | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| return (low + high) / 2. | |||
| def _var(self, low=None, high=None): | |||
| r""" | |||
| .. math:: | |||
| VAR(U) = \frac{(high -low) ^ 2}{12}. | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| return self.sq(high - low) / 12.0 | |||
| def _entropy(self, low=None, high=None): | |||
| @@ -181,8 +194,12 @@ class Uniform(Distribution): | |||
| .. math:: | |||
| H(U) = \log(high - low). | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| return self.log(high - low) | |||
| def _cross_entropy(self, dist, low_b, high_b, low_a=None, high_a=None): | |||
| @@ -196,9 +213,8 @@ class Uniform(Distribution): | |||
| low_a (Tensor): lower bound of distribution a. Default: self.low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self.high. | |||
| """ | |||
| if dist == 'Uniform': | |||
| return self._entropy(low=low_a, high=high_a) + self._kl_loss(dist, low_b, high_b, low_a, high_a) | |||
| return None | |||
| check_distribution_name(dist, 'Uniform') | |||
| return self._entropy(low=low_a, high=high_a) + self._kl_loss(dist, low_b, high_b, low_a, high_a) | |||
| def _prob(self, value, low=None, high=None): | |||
| r""" | |||
| @@ -214,8 +230,15 @@ class Uniform(Distribution): | |||
| pdf(x) = \frac{1.0}{high -low} if low <= x <= high; | |||
| pdf(x) = 0 if x > high; | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| neg_ones = self.fill(self.dtype, self.shape(value), -1.0) | |||
| prob = self.exp(neg_ones * self.log(high - low)) | |||
| broadcast_shape = self.shape(prob) | |||
| @@ -236,13 +259,22 @@ class Uniform(Distribution): | |||
| low_a (Tensor): lower bound of distribution a. Default: self.low. | |||
| high_a (Tensor): upper bound of distribution a. Default: self.high. | |||
| """ | |||
| if dist == 'Uniform': | |||
| low_a = self.low if low_a is None else low_a | |||
| high_a = self.high if high_a is None else high_a | |||
| kl = self.log(high_b - low_b) / self.log(high_a - low_a) | |||
| comp = self.logicaland(self.lessequal(low_b, low_a), self.lessequal(high_a, high_b)) | |||
| return self.select(comp, kl, self.log(self.zeroslike(kl))) | |||
| return None | |||
| check_distribution_name(dist, 'Uniform') | |||
| if low_b is None: | |||
| raise_none_error("low_b") | |||
| if high_b is None: | |||
| raise_none_error("high_b") | |||
| low_b = self.cast(low_b, self.parameter_type) | |||
| high_b = self.cast(high_b, self.parameter_type) | |||
| low_a = self.cast(low_a, self.parameter_type) if low_a is not None else self.low | |||
| if low_a is None: | |||
| raise_none_error("low_a") | |||
| high_a = self.cast(high_a, self.parameter_type) if high_a is not None else self.high | |||
| if high_a is None: | |||
| raise_none_error("high_a") | |||
| kl = self.log(high_b - low_b) / self.log(high_a - low_a) | |||
| comp = self.logicaland(self.lessequal(low_b, low_a), self.lessequal(high_a, high_b)) | |||
| return self.select(comp, kl, self.log(self.zeroslike(kl))) | |||
| def _cdf(self, value, low=None, high=None): | |||
| r""" | |||
| @@ -258,8 +290,15 @@ class Uniform(Distribution): | |||
| cdf(x) = \frac{x - low}{high -low} if low <= x <= high; | |||
| cdf(x) = 1 if x > high; | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| if value is None: | |||
| raise_none_error("value") | |||
| value = self.cast(value, self.dtype) | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| prob = (value - low) / (high - low) | |||
| broadcast_shape = self.shape(prob) | |||
| zeros = self.fill(self.dtypeop(prob), broadcast_shape, 0.0) | |||
| @@ -281,8 +320,12 @@ class Uniform(Distribution): | |||
| Returns: | |||
| Tensor, shape is shape + batch_shape. | |||
| """ | |||
| low = self.low if low is None else low | |||
| high = self.high if high is None else high | |||
| low = self.cast(low, self.parameter_type) if low is not None else self.low | |||
| if low is None: | |||
| raise_none_error("low") | |||
| high = self.cast(high, self.parameter_type) if high is not None else self.high | |||
| if high is None: | |||
| raise_none_error("high") | |||
| broadcast_shape = self.shape(low + high) | |||
| l_zero = self.const(0.0) | |||
| h_one = self.const(1.0) | |||