Browse Source

!13216 If data_format is NCDHW, BatchNorm to BatchNorm3D.

From: @liu_xiao_93
Reviewed-by: @liangchenghui,@wuxuejian
Signed-off-by: @liangchenghui
tags/v1.2.0-rc1
mindspore-ci-bot Gitee 4 years ago
parent
commit
2013e3f370
13 changed files with 411 additions and 32 deletions
  1. +6
    -0
      mindspore/ccsrc/backend/optimizer/ascend/ascend_backend_optimization.cc
  2. +85
    -0
      mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.cc
  3. +34
    -0
      mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.h
  4. +104
    -0
      mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.cc
  5. +33
    -0
      mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.h
  6. +2
    -0
      mindspore/ccsrc/utils/utils.h
  7. +35
    -26
      mindspore/nn/layer/normalization.py
  8. +1
    -1
      mindspore/ops/_grad/grad_nn_ops.py
  9. +2
    -0
      mindspore/ops/_op_impl/tbe/__init__.py
  10. +51
    -0
      mindspore/ops/_op_impl/tbe/batchnorm3d.py
  11. +51
    -0
      mindspore/ops/_op_impl/tbe/batchnorm3d_grad.py
  12. +2
    -2
      mindspore/ops/operations/_grad_ops.py
  13. +5
    -3
      mindspore/ops/operations/nn_ops.py

+ 6
- 0
mindspore/ccsrc/backend/optimizer/ascend/ascend_backend_optimization.cc View File

@@ -64,6 +64,8 @@
#include "backend/optimizer/ascend/ir_fusion/derelu_fusion.h"
#include "backend/optimizer/ascend/ir_fusion/batchnorm_to_bninfer.h"
#include "backend/optimizer/ascend/ir_fusion/batchnormgrad_to_bninfergrad.h"
#include "backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.h"
#include "backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.h"
#include "backend/optimizer/ascend/ir_fusion/confusion_mul_grad_fusion.h"
#include "backend/optimizer/ascend/ir_fusion/softmax_grad_ext_fusion.h"
#include "backend/optimizer/ascend/format_type/insert_trans_op.h"
@@ -276,6 +278,8 @@ void AscendBackendIRFusionOptimization(const std::shared_ptr<session::KernelGrap
}
auto optimizer = std::make_shared<GraphOptimizer>();
auto ir_fusion_pm = std::make_shared<PassManager>("ir_fusion_pm");
ir_fusion_pm->AddPass(std::make_shared<BatchNorm2BatchNorm3D>());
ir_fusion_pm->AddPass(std::make_shared<BatchNormGrad2BatchNorm3DGRAD>());
ir_fusion_pm->AddPass(std::make_shared<BnSplit>());
ir_fusion_pm->AddPass(std::make_shared<BnGradSplit>());
ir_fusion_pm->AddPass(std::make_shared<SyncBnSplit>());
@@ -321,6 +325,8 @@ void RunOpAscendBackendIRFusionOptimization(const std::shared_ptr<session::Kerne
auto ir_fusion_pm = std::make_shared<PassManager>("ir_fusion_pm");
ir_fusion_pm->AddPass(std::make_shared<SplitFission>());
ir_fusion_pm->AddPass(std::make_shared<SplitVFission>());
ir_fusion_pm->AddPass(std::make_shared<BatchNorm2BatchNorm3D>());
ir_fusion_pm->AddPass(std::make_shared<BatchNormGrad2BatchNorm3DGRAD>());
ir_fusion_pm->AddPass(std::make_shared<BnSplit>());
ir_fusion_pm->AddPass(std::make_shared<BnGradSplit>());
ir_fusion_pm->AddPass(std::make_shared<LayerNormGradSplit>());


+ 85
- 0
mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.cc View File

@@ -0,0 +1,85 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.h"
#include <memory>
#include <string>
#include <vector>
#include "backend/session/anf_runtime_algorithm.h"
#include "ir/primitive.h"
#include "utils/utils.h"
#include "base/core_ops.h"
#include "abstract/abstract_value.h"
#include "backend/optimizer/common/helper.h"

namespace mindspore {
namespace opt {
namespace {
constexpr size_t kBN3DGradInputXIndex = 2;
CNodePtr CreateBatchNorm3DGrad(const FuncGraphPtr &graph, const CNodePtr &batchnorm_grad) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(batchnorm_grad);
auto prim = std::make_shared<Primitive>(kBatchNorm3DGradOpName);
std::vector<AnfNodePtr> inputs = {NewValueNode(prim)};
for (size_t i = 1; i < batchnorm_grad->size(); ++i) {
inputs.push_back(batchnorm_grad->input(i));
}
auto new_node = graph->NewCNode(inputs);
MS_EXCEPTION_IF_NULL(new_node);
new_node->set_scope(batchnorm_grad->scope());
new_node->set_abstract(batchnorm_grad->abstract());
AnfAlgo::CopyNodeAttrs(batchnorm_grad, new_node);
return new_node;
}

bool NeedFusion(const FuncGraphPtr &graph, const CNodePtr &batchnorm_grad) {
MS_EXCEPTION_IF_NULL(batchnorm_grad);
if (AnfAlgo::GetInputTensorNum(batchnorm_grad) < kBNGradInputTensorNum) {
MS_LOG(INFO) << "BatchNormGrad's input less than " << kBNGradInputTensorNum;
return false;
}
auto format = AnfAlgo::GetNodeAttr<std::string>(batchnorm_grad, kAttrFormat);
const auto &ori_inputs = batchnorm_grad->inputs();
auto x_shape = AnfAlgo::GetOutputInferShape(ori_inputs[kBN3DGradInputXIndex], 0);
if (format != kOpFormat_NCDHW || x_shape.size() != 5) {
MS_LOG(INFO) << "Only format is NCDHW and the input dim of BatchNormGrad is 5, then do fusion. But format is: "
<< format << ", size of x_shape is: " << x_shape.size();
return false;
}
return true;
}
} // namespace

const BaseRef BatchNormGrad2BatchNorm3DGRAD::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
MS_EXCEPTION_IF_NULL(Xs);
VectorRef pattern({prim::kPrimBatchNormGrad, Xs});
return pattern;
}

const AnfNodePtr BatchNormGrad2BatchNorm3DGRAD::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
auto cnode_bn_grad = node->cast<CNodePtr>();
if (!NeedFusion(graph, cnode_bn_grad)) {
return nullptr;
}
auto bn_3d_grad = CreateBatchNorm3DGrad(graph, cnode_bn_grad);
TransferDepend(cnode_bn_grad, graph, bn_3d_grad);
return bn_3d_grad;
}
} // namespace opt
} // namespace mindspore

+ 34
- 0
mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_grad_to_batchnorm3d_grad.h View File

@@ -0,0 +1,34 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_GRAD_TO_BATCHNORM_3D_GRAD_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_GRAD_TO_BATCHNORM_3D_GRAD_H_

#include <memory>
#include "backend/optimizer/common/optimizer.h"

namespace mindspore {
namespace opt {
class BatchNormGrad2BatchNorm3DGRAD : public PatternProcessPass {
public:
explicit BatchNormGrad2BatchNorm3DGRAD(bool multigraph = true)
: PatternProcessPass("batchnorm_grad_to_batchnorm3d_grad", multigraph) {}
~BatchNormGrad2BatchNorm3DGRAD() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_GRAD_TO_BATCHNORM_3D_GRAD_H_

+ 104
- 0
mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.cc View File

@@ -0,0 +1,104 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.h"
#include <memory>
#include <string>
#include <vector>
#include "backend/session/anf_runtime_algorithm.h"
#include "ir/primitive.h"
#include "utils/utils.h"
#include "base/core_ops.h"
#include "abstract/abstract_value.h"
#include "backend/optimizer/common/helper.h"

namespace mindspore {
namespace opt {
namespace {
constexpr size_t kBN3InputXIndex = 1;
constexpr size_t kBn3DTrainInputTensorNum = 3;
CNodePtr CreateBatchNorm3D(const FuncGraphPtr &graph, const CNodePtr &batchnorm) {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(batchnorm);
auto prim = std::make_shared<Primitive>(kBatchNorm3DOpName);
std::vector<AnfNodePtr> inputs = {NewValueNode(prim)};
auto is_training = AnfAlgo::GetNodeAttr<bool>(batchnorm, kAttrIsTraining);
for (size_t i = 1; i < batchnorm->size(); ++i) {
if (is_training && i > kBn3DTrainInputTensorNum) {
continue;
} else {
inputs.push_back(batchnorm->input(i));
}
}
auto new_node = graph->NewCNode(inputs);
MS_EXCEPTION_IF_NULL(new_node);
new_node->set_scope(batchnorm->scope());
new_node->set_abstract(batchnorm->abstract());
AnfAlgo::CopyNodeAttrs(batchnorm, new_node);
return new_node;
}

bool NeedFusion(const FuncGraphPtr &graph, const CNodePtr &batchnorm) {
MS_EXCEPTION_IF_NULL(batchnorm);
if (!AnfAlgo::HasNodeAttr(kAttrIsTraining, batchnorm)) {
MS_LOG(INFO) << "BatchNorm has no is_training attr.";
return false;
}
auto is_training = AnfAlgo::GetNodeAttr<bool>(batchnorm, kAttrIsTraining);
auto format = AnfAlgo::GetNodeAttr<std::string>(batchnorm, kAttrFormat);
if (is_training && format == kOpFormat_NCDHW) {
if (AnfAlgo::GetInputTensorNum(batchnorm) < kBn3DTrainInputTensorNum) {
MS_LOG(INFO) << "When data format is NCDHW and is_training is true, BatchNorm's input less than "
<< kBn3DTrainInputTensorNum;
return false;
}
} else {
if (AnfAlgo::GetInputTensorNum(batchnorm) < kBnInputTensorNum) {
MS_LOG(INFO) << "BatchNorm's input less than " << kBnInputTensorNum;
return false;
}
}
const auto &ori_inputs = batchnorm->inputs();
auto x_shape = AnfAlgo::GetOutputInferShape(ori_inputs[kBN3InputXIndex], 0);
if (format != kOpFormat_NCDHW || x_shape.size() != 5) {
MS_LOG(INFO) << "Only format is NCDHW and the input dim of BatchNorm is 5, then do fusion. But format is: "
<< format << ", size of x_shape is: " << x_shape.size();
return false;
}
return true;
}
} // namespace

const BaseRef BatchNorm2BatchNorm3D::DefinePattern() const {
VarPtr Xs = std::make_shared<SeqVar>();
MS_EXCEPTION_IF_NULL(Xs);
VectorRef pattern({prim::kPrimBatchNorm, Xs});
return pattern;
}

const AnfNodePtr BatchNorm2BatchNorm3D::Process(const FuncGraphPtr &graph, const AnfNodePtr &node,
const EquivPtr &) const {
MS_EXCEPTION_IF_NULL(graph);
MS_EXCEPTION_IF_NULL(node);
auto cnode_bn = node->cast<CNodePtr>();
if (!NeedFusion(graph, cnode_bn)) {
return nullptr;
}
auto bn_3d = CreateBatchNorm3D(graph, cnode_bn);
TransferDepend(cnode_bn, graph, bn_3d);
return bn_3d;
}
} // namespace opt
} // namespace mindspore

+ 33
- 0
mindspore/ccsrc/backend/optimizer/ascend/ir_fusion/batchnorm_to_batchnorm3d.h View File

@@ -0,0 +1,33 @@
/**
* Copyright 2021 Huawei Technologies Co., Ltd
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_TO_BATCHNORM_3D_H_
#define MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_TO_BATCHNORM_3D_H_

#include <memory>
#include "backend/optimizer/common/optimizer.h"

namespace mindspore {
namespace opt {
class BatchNorm2BatchNorm3D : public PatternProcessPass {
public:
explicit BatchNorm2BatchNorm3D(bool multigraph = true) : PatternProcessPass("batchnorm_to_batchnorm3d", multigraph) {}
~BatchNorm2BatchNorm3D() override = default;
const BaseRef DefinePattern() const override;
const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override;
};
} // namespace opt
} // namespace mindspore
#endif // MINDSPORE_CCSRC_BACKEND_OPTIMIZER_ASCEND_IR_FUSION_BATCHNORM_TO_BATCHNORM_3D_H_

+ 2
- 0
mindspore/ccsrc/utils/utils.h View File

@@ -142,6 +142,8 @@ constexpr auto kAdamApplyOneWithDecayOpName = "AdamApplyOneWithDecay";
constexpr auto kAdamApplyOneWithDecayAssignOpName = "AdamApplyOneWithDecayAssign";
constexpr auto kBatchNormGradOpName = "BatchNormGrad";
constexpr auto kBNInferOpName = "BNInfer";
constexpr auto kBatchNorm3DOpName = "BatchNorm3D";
constexpr auto kBatchNorm3DGradOpName = "BatchNorm3DGrad";
constexpr auto kAdamApplyOneOpName = "AdamApplyOne";
constexpr auto kAdamApplyOneAssignOpName = "AdamApplyOneAssign";
constexpr auto kResizeNearestNeighborGradOpName = "ResizeNearestNeighborGrad";


+ 35
- 26
mindspore/nn/layer/normalization.py View File

@@ -31,7 +31,8 @@ from mindspore.communication import management
from mindspore.ops import _selected_ops
from ..cell import Cell

__all__ = ['BatchNorm1d', 'BatchNorm2d', 'LayerNorm', 'GroupNorm', 'GlobalBatchNorm', 'SyncBatchNorm', 'InstanceNorm2d']
__all__ = ['BatchNorm1d', 'BatchNorm2d', 'BatchNorm3d', 'LayerNorm', 'GroupNorm',
'GlobalBatchNorm', 'SyncBatchNorm', 'InstanceNorm2d']

SYNC_BN_GROUP_NAME = ""

@@ -60,13 +61,16 @@ class _BatchNorm(Cell):

if momentum < 0 or momentum > 1:
raise ValueError("momentum should be a number in range [0, 1], but got {}".format(momentum))
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.cls_name)
self.input_dims = input_dims
if self.input_dims == "3d":
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.cls_name)
else:
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.cls_name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError("NHWC format only support in GPU target.")
self.use_batch_statistics = use_batch_statistics
self.num_features = num_features
self.eps = eps
self.input_dims = input_dims
self.moving_mean = Parameter(initializer(
moving_mean_init, num_features), name="mean", requires_grad=False)
self.moving_variance = Parameter(initializer(
@@ -134,7 +138,8 @@ class _BatchNorm(Cell):
if self._target == "Ascend":
self.bn_train = P.BatchNorm(is_training=True,
epsilon=self.eps,
momentum=self.momentum)
momentum=self.momentum,
data_format=self.format)
if self._target == "GPU":
self.bn_train = P.FusedBatchNormEx(mode=1,
epsilon=self.eps,
@@ -220,11 +225,14 @@ def _shape_check(in_shape):

@constexpr
def _shape_check_bn(in_shape, in_dims):
"""check input dims of batch norm."""
dim = len(in_shape)
if in_dims == '1d' and dim != 2:
raise ValueError("The input must has 2 dims.")
if in_dims == '2d' and dim != 4:
raise ValueError("The input must has 4 dims.")
if in_dims == '3d' and dim != 5:
raise ValueError("The input must has 5 dims.")
if in_dims == 'both' and dim != 2 and dim != 4:
raise ValueError("The input must has 2 dims or 4 dims.")

@@ -445,7 +453,7 @@ def _check_3d_shape(input_shape):
raise ValueError("For BatchNorm3d, input data must be 5-dimensional.")


class BatchNorm3d(Cell):
class BatchNorm3d(_BatchNorm):
r"""
Batch normalization layer over a 5D input.

@@ -489,8 +497,15 @@ class BatchNorm3d(Cell):
Outputs:
Tensor, the normalized, scaled, offset tensor, of shape :math:`(N, C_{out}, D_{out},H_{out}, W_{out})`.

Raises:
TypeError: If `num_features` is not an int.
TypeError: If `eps` is not a float.
ValueError: If `num_features` is less than 1.
ValueError: If `momentum` is not in range [0, 1].
ValueError: If `data_format` is not 'NCDHW'.

Supported Platforms:
``Ascend`` ``GPU`` ``CPU``
``Ascend``

Examples:
>>> net = nn.BatchNorm3d(num_features=3)
@@ -512,27 +527,21 @@ class BatchNorm3d(Cell):
moving_var_init='ones',
use_batch_statistics=None,
data_format='NCDHW'):
super(BatchNorm3d, self).__init__()
self.format = validator.check_string(data_format, ['NCDHW'], 'format', self.cls_name)
self.reshape = P.Reshape()
self.bn2d = BatchNorm2d(num_features=num_features,
eps=eps,
momentum=momentum,
affine=affine,
gamma_init=gamma_init,
beta_init=beta_init,
moving_mean_init=moving_mean_init,
moving_var_init=moving_var_init,
use_batch_statistics=use_batch_statistics,
data_format="NCHW")
super(BatchNorm3d, self).__init__(num_features,
eps,
momentum,
affine,
gamma_init,
beta_init,
moving_mean_init,
moving_var_init,
use_batch_statistics,
input_dims='3d',
data_format=data_format)

def construct(self, input_x):
x_shape = F.shape(input_x)
_check_3d_shape(x_shape)
input_x = self.reshape(input_x, (x_shape[0], x_shape[1], x_shape[2]*x_shape[3], x_shape[4]))
bn2d_out = self.bn2d(input_x)
bn3d_out = self.reshape(bn2d_out, x_shape)
return bn3d_out
def _check_data_dim(self, x):
if x.ndim != 5:
pass


class GlobalBatchNorm(_BatchNorm):


+ 1
- 1
mindspore/ops/_grad/grad_nn_ops.py View File

@@ -712,7 +712,7 @@ def get_bprop_instance_norm(self):
def get_bprop_batch_norm(self):
"""Grad definition for `BatchNorm` operation."""
is_training = self.is_training
input_grad = G.BatchNormGrad(is_training, self.epsilon)
input_grad = G.BatchNormGrad(is_training, self.epsilon, self.data_format)

def bprop(x, scale, b, mean, variance, out, dout):
if is_training:


+ 2
- 0
mindspore/ops/_op_impl/tbe/__init__.py View File

@@ -48,6 +48,8 @@ from .assign_sub import _assign_sub_tbe
from .batch_matmul import _batch_matmul_tbe
from .batchnorm import _batch_norm_tbe
from .batchnorm_grad import _batch_norm_grad_tbe
from .batchnorm3d import _batch_norm3d_tbe
from .batchnorm3d_grad import _batch_norm3d_grad_tbe
from .bias_add import _bias_add_tbe
from .bias_add_grad import _bias_add_grad_tbe
from .cast import _cast_tbe


+ 51
- 0
mindspore/ops/_op_impl/tbe/batchnorm3d.py View File

@@ -0,0 +1,51 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""BatchNorm3D op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType

batch_norm3d_op_info = TBERegOp("BatchNorm3D") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("batch_norm3d.so") \
.compute_cost(10) \
.kernel_name("batch_norm3d") \
.partial_flag(True) \
.attr("epsilon", "optional", "float", "all") \
.attr("format", "optional", "str", "all") \
.attr("is_training", "optional", "bool", "all") \
.input(0, "x", False, "required", "all") \
.input(1, "scale", False, "required", "all", reshape_type="C") \
.input(2, "offset", False, "required", "all", reshape_type="C") \
.input(3, "mean", False, "optional", "all", reshape_type="C") \
.input(4, "variance", False, "optional", "all", reshape_type="C") \
.output(0, "y", False, "required", "all") \
.output(1, "batch_mean", False, "required", "all") \
.output(2, "batch_variance", False, "required", "all") \
.output(3, "reserve_space_1", False, "optional", "all") \
.output(4, "reserve_space_2", False, "optional", "all") \
.dtype_format(DataType.F16_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F16_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0) \
.dtype_format(DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0) \
.get_op_info()


@op_info_register(batch_norm3d_op_info)
def _batch_norm3d_tbe():
"""BatchNorm3D TBE register"""
return

+ 51
- 0
mindspore/ops/_op_impl/tbe/batchnorm3d_grad.py View File

@@ -0,0 +1,51 @@
# Copyright 2021 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""BatchNorm3DGrad op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType

batch_norm3d_grad_op_info = TBERegOp("BatchNorm3DGrad") \
.fusion_type("OPAQUE") \
.async_flag(False) \
.binfile_name("batch_norm3d_grad.so") \
.compute_cost(10) \
.kernel_name("batch_norm3d_grad") \
.partial_flag(True) \
.attr("epsilon", "optional", "float", "all") \
.attr("format", "optional", "str", "all") \
.attr("is_training", "optional", "bool", "all") \
.input(0, "y_backprop", False, "required", "all") \
.input(1, "x", False, "required", "all") \
.input(2, "scale", False, "required", "all", reshape_type="C") \
.input(3, "reserve_space_1", False, "optional", "all") \
.input(4, "reserve_space_2", False, "optional", "all") \
.output(0, "x_backprop", False, "required", "all") \
.output(1, "scale_backprop", False, "required", "all") \
.output(2, "offset_backprop", False, "required", "all") \
.output(3, "reserve_space_4", False, "optional", "all") \
.output(4, "reserve_space_5", False, "optional", "all") \
.dtype_format(DataType.F16_NDC1HWC0, DataType.F16_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F16_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0) \
.dtype_format(DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0,
DataType.F32_NDC1HWC0, DataType.F32_NDC1HWC0) \
.get_op_info()


@op_info_register(batch_norm3d_grad_op_info)
def _batch_norm3d_grad_tbe():
"""BatchNorm3DGrad TBE register"""
return

+ 2
- 2
mindspore/ops/operations/_grad_ops.py View File

@@ -192,10 +192,10 @@ class BatchNormGrad(PrimitiveWithInfer):
"""Performs grad of BatchNorm operation."""

@prim_attr_register
def __init__(self, is_training=False, epsilon=1e-5):
def __init__(self, is_training=False, epsilon=1e-5, data_format='NCHW'):
self.is_training = validator.check_value_type('is_training', is_training, (bool,), self.name)
self.epsilon = validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name)
self.add_prim_attr('data_format', "NCHW")
self.data_format = validator.check_string(data_format, ['NCHW', 'NHWC', "NCDHW"], 'format', self.name)

def infer_shape(self, y_backprop_shape, x_shape, scale_shape, reserve_1_shape, reserve_2_shape):
validator.check("BatchNorm y_backprop_shape", y_backprop_shape, "BatchNorm x_shape", x_shape)


+ 5
- 3
mindspore/ops/operations/nn_ops.py View File

@@ -1326,18 +1326,20 @@ class BatchNorm(PrimitiveWithInfer):
validator.check_value_type('is_training', is_training, (bool,), self.name)
validator.check_float_range(epsilon, 0, 1, Rel.INC_RIGHT, 'epsilon', self.name)
validator.check_float_range(momentum, 0, 1, Rel.INC_BOTH, 'momentum', self.name)
self.format = validator.check_string(data_format, ['NCHW', 'NHWC'], 'format', self.name)
self.format = validator.check_string(data_format, ['NCHW', 'NHWC', "NCDHW"], 'format', self.name)
if context.get_context("device_target") != "GPU" and self.format == "NHWC":
raise ValueError("NHWC format only support in GPU target.")
if context.get_context("device_target") != "Ascend" and self.format == "NCDHW":
raise ValueError("NCDHW format only support in Ascend target.")
self.add_prim_attr('data_format', self.format)
self.init_prim_io_names(inputs=['x', 'scale', 'offset', 'mean', 'variance'],
outputs=['y', 'batch_mean', 'batch_variance', 'reserve_space_1', 'reserve_space_2'])

def infer_shape(self, input_x, scale, bias, mean, variance):
input_shape_norm = input_x if self.format == "NCHW" else (input_x[0], input_x[3], input_x[1], input_x[2])
input_x_channel = input_x[-1] if self.format == "NHWC" else input_x[1]
validator.check_equal_int(len(scale), 1, "scale rank", self.name)
validator.check("scale shape", scale, "bias shape", bias, Rel.EQ, self.name)
validator.check("scale shape[0]", scale[0], "input_x channel", input_shape_norm[1], Rel.EQ, self.name)
validator.check("scale shape[0]", scale[0], "input_x channel", input_x_channel, Rel.EQ, self.name)
if not self.is_training:
validator.check_equal_int(len(mean), 1, "mean rank", self.name)
validator.check("mean shape", mean, "variance shape", variance, Rel.EQ, self.name)


Loading…
Cancel
Save