|
|
@@ -17,7 +17,6 @@ import pytest |
|
|
import mindspore.context as context |
|
|
import mindspore.context as context |
|
|
import mindspore.nn as nn |
|
|
import mindspore.nn as nn |
|
|
from mindspore.ops import operations as P |
|
|
from mindspore.ops import operations as P |
|
|
from scipy.stats import kstest |
|
|
|
|
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") |
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="CPU") |
|
|
|
|
|
|
|
|
@@ -35,7 +34,7 @@ class Net(nn.Cell): |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.level0 |
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
|
|
|
|
|
@pytest.mark.platform_x86_cpu |
|
|
@pytest.mark.env_onecard |
|
|
@pytest.mark.env_onecard |
|
|
def test_net(): |
|
|
def test_net(): |
|
|
seed = 10 |
|
|
seed = 10 |
|
|
@@ -45,10 +44,6 @@ def test_net(): |
|
|
output = net() |
|
|
output = net() |
|
|
assert output.shape == (5, 6, 8) |
|
|
assert output.shape == (5, 6, 8) |
|
|
outnumpyflatten_1 = output.asnumpy().flatten() |
|
|
outnumpyflatten_1 = output.asnumpy().flatten() |
|
|
_, p_value = kstest(outnumpyflatten_1, "norm") |
|
|
|
|
|
# p-value is greater than the significance level, cannot reject the hypothesis that the data come from |
|
|
|
|
|
# the standard norm distribution. |
|
|
|
|
|
assert p_value >= 0.05 |
|
|
|
|
|
|
|
|
|
|
|
seed = 0 |
|
|
seed = 0 |
|
|
seed2 = 10 |
|
|
seed2 = 10 |
|
|
@@ -57,8 +52,6 @@ def test_net(): |
|
|
output = net() |
|
|
output = net() |
|
|
assert output.shape == (5, 6, 8) |
|
|
assert output.shape == (5, 6, 8) |
|
|
outnumpyflatten_2 = output.asnumpy().flatten() |
|
|
outnumpyflatten_2 = output.asnumpy().flatten() |
|
|
_, p_value = kstest(outnumpyflatten_2, "norm") |
|
|
|
|
|
assert p_value >= 0.05 |
|
|
|
|
|
# same seed should generate same random number |
|
|
# same seed should generate same random number |
|
|
assert (outnumpyflatten_1 == outnumpyflatten_2).all() |
|
|
assert (outnumpyflatten_1 == outnumpyflatten_2).all() |
|
|
|
|
|
|
|
|
@@ -68,18 +61,3 @@ def test_net(): |
|
|
net = Net(shape, seed, seed2) |
|
|
net = Net(shape, seed, seed2) |
|
|
output = net() |
|
|
output = net() |
|
|
assert output.shape == (130, 120, 141) |
|
|
assert output.shape == (130, 120, 141) |
|
|
outnumpyflatten_1 = output.asnumpy().flatten() |
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_1, "norm") |
|
|
|
|
|
assert p_value >= 0.05 |
|
|
|
|
|
|
|
|
|
|
|
seed = 0 |
|
|
|
|
|
seed2 = 0 |
|
|
|
|
|
shape = (130, 120, 141) |
|
|
|
|
|
net = Net(shape, seed, seed2) |
|
|
|
|
|
output = net() |
|
|
|
|
|
assert output.shape == (130, 120, 141) |
|
|
|
|
|
outnumpyflatten_2 = output.asnumpy().flatten() |
|
|
|
|
|
_, p_value = kstest(outnumpyflatten_2, "norm") |
|
|
|
|
|
assert p_value >= 0.05 |
|
|
|
|
|
# different seed(seed = 0) should generate different random number |
|
|
|
|
|
assert ~(outnumpyflatten_1 == outnumpyflatten_2).all() |
|
|
|