|
|
|
@@ -284,6 +284,9 @@ class BCELoss(_Loss): |
|
|
|
\operatorname{sum}(L), & \text{if reduction} = \text{`sum'.} |
|
|
|
\end{cases} |
|
|
|
|
|
|
|
Note that the predicted labels should always be the output of sigmoid and the true labels should be numbers |
|
|
|
between 0 and 1. |
|
|
|
|
|
|
|
Args: |
|
|
|
weight (Tensor, optional): A rescaling weight applied to the loss of each batch element. |
|
|
|
And it must have same shape and data type as `inputs`. Default: None |
|
|
|
@@ -296,7 +299,7 @@ class BCELoss(_Loss): |
|
|
|
|
|
|
|
Outputs: |
|
|
|
Tensor or Scalar, if `reduction` is 'none', then output is a tensor and has the same shape as `inputs`. |
|
|
|
Otherwise, the output is a scalar. default: 'none' |
|
|
|
Otherwise, the output is a scalar. |
|
|
|
|
|
|
|
Examples: |
|
|
|
>>> weight = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 3.3, 2.2]]), mindspore.float32) |
|
|
|
|