|
|
|
@@ -257,11 +257,11 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e |
|
|
|
|
|
|
|
.. math:: |
|
|
|
decayed\_learning\_rate[i] = (learning\_rate - end\_learning\_rate) * |
|
|
|
(1 - tmp\_epoch / decay\_epoch)^{power} + end\_learning\_rate |
|
|
|
(1 - tmp\_epoch / tmp\_decay\_epoch)^{power} + end\_learning\_rate |
|
|
|
|
|
|
|
Where :math:`tmp\_epoch=min(current\_epoch, decay\_epoch), current\_epoch=floor(\frac{i}{step\_per\_epoch})`. |
|
|
|
If `update_decay_epoch` is true, update the value of `decay_epoch` every epoch. The formula is |
|
|
|
:math:`decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)` |
|
|
|
Where :math:`tmp\_epoch=min(current\_epoch, decay\_epoch),\ current\_epoch=floor(\frac{i}{step\_per\_epoch})`, and |
|
|
|
:math:`tmp\_decay\_epoch = decay\_epoch`. If `update_decay_epoch` is true, update the value of `tmp_decay_epoch` |
|
|
|
every epoch. The formula is :math:`tmp\_decay\_epoch = decay\_epoch * ceil(current\_epoch / decay\_epoch)` |
|
|
|
|
|
|
|
Args: |
|
|
|
learning_rate (float): The initial value of learning rate. |
|
|
|
@@ -296,9 +296,10 @@ def polynomial_decay_lr(learning_rate, end_learning_rate, total_step, step_per_e |
|
|
|
validator.check_integer('decay_epoch', decay_epoch, 0, Rel.GT, None) |
|
|
|
validator.check_value_type('update_decay_epoch', update_decay_epoch, [bool], None) |
|
|
|
|
|
|
|
origin_decay_epoch = decay_epoch |
|
|
|
function = lambda x, y: (x, min(x, y)) |
|
|
|
if update_decay_epoch: |
|
|
|
function = lambda x, y: (x * max(math.ceil(y / x), 1), y) |
|
|
|
function = lambda x, y: (origin_decay_epoch * max(math.ceil(y / origin_decay_epoch), 1), y) |
|
|
|
|
|
|
|
lr = [] |
|
|
|
delta = learning_rate - end_learning_rate |
|
|
|
|