Browse Source

!4227 fix pylint warning in model_zoo

Merge pull request !4227 from panbingao/pylintfix
tags/v0.7.0-beta
mindspore-ci-bot Gitee 5 years ago
parent
commit
1f7d72dd2a
27 changed files with 50 additions and 20 deletions
  1. +1
    -1
      model_zoo/official/cv/deeplabv3/src/md_dataset.py
  2. +0
    -2
      model_zoo/official/cv/faster_rcnn/src/network_define.py
  3. +0
    -2
      model_zoo/official/cv/maskrcnn/src/network_define.py
  4. +1
    -1
      model_zoo/official/cv/ssd/src/dataset.py
  5. +1
    -1
      model_zoo/official/cv/ssd/src/init_params.py
  6. +1
    -1
      model_zoo/official/cv/warpctc/src/warpctc_for_train.py
  7. +3
    -0
      model_zoo/official/gnn/gat/src/gat.py
  8. +2
    -1
      model_zoo/official/gnn/gat/src/utils.py
  9. +3
    -0
      model_zoo/official/gnn/gcn/src/gcn.py
  10. +1
    -0
      model_zoo/official/gnn/gcn/src/metrics.py
  11. +1
    -0
      model_zoo/official/nlp/bert/pretrain_eval.py
  12. +3
    -1
      model_zoo/official/nlp/bert/src/bert_for_finetune.py
  13. +2
    -0
      model_zoo/official/nlp/bert/src/bert_for_pre_training.py
  14. +7
    -3
      model_zoo/official/nlp/bert/src/bert_model.py
  15. +1
    -0
      model_zoo/official/nlp/bert/src/finetune_eval_model.py
  16. +2
    -1
      model_zoo/official/nlp/bert/src/fused_layer_norm.py
  17. +1
    -0
      model_zoo/official/nlp/mass/src/transformer/components.py
  18. +1
    -1
      model_zoo/official/nlp/tinybert/src/fused_layer_norm.py
  19. +1
    -0
      model_zoo/official/nlp/transformer/src/beam_search.py
  20. +1
    -1
      model_zoo/official/nlp/transformer/src/transformer_for_train.py
  21. +11
    -2
      model_zoo/official/nlp/transformer/src/transformer_model.py
  22. +1
    -0
      model_zoo/official/nlp/transformer/train.py
  23. +1
    -0
      model_zoo/official/recommend/deepfm/src/callback.py
  24. +1
    -1
      model_zoo/official/recommend/deepfm/src/dataset.py
  25. +1
    -0
      model_zoo/official/recommend/deepfm/src/deepfm.py
  26. +1
    -0
      model_zoo/official/recommend/wide_and_deep/src/callbacks.py
  27. +1
    -1
      model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py

+ 1
- 1
model_zoo/official/cv/deeplabv3/src/md_dataset.py View File

@@ -13,10 +13,10 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""Dataset module.""" """Dataset module."""
import numpy as np
from PIL import Image from PIL import Image
import mindspore.dataset as de import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.vision.c_transforms as C
import numpy as np


from .ei_dataset import HwVocRawDataset from .ei_dataset import HwVocRawDataset
from .utils import custom_transforms as tr from .utils import custom_transforms as tr


+ 0
- 2
model_zoo/official/cv/faster_rcnn/src/network_define.py View File

@@ -110,8 +110,6 @@ class LossCallBack(Callback):


class LossNet(nn.Cell): class LossNet(nn.Cell):
"""FasterRcnn loss method""" """FasterRcnn loss method"""
def __init__(self):
super(LossNet, self).__init__()
def construct(self, x1, x2, x3, x4, x5, x6): def construct(self, x1, x2, x3, x4, x5, x6):
return x1 + x2 return x1 + x2




+ 0
- 2
model_zoo/official/cv/maskrcnn/src/network_define.py View File

@@ -117,8 +117,6 @@ class LossCallBack(Callback):


class LossNet(nn.Cell): class LossNet(nn.Cell):
"""MaskRcnn loss method""" """MaskRcnn loss method"""
def __init__(self):
super(LossNet, self).__init__()
def construct(self, x1, x2, x3, x4, x5, x6, x7): def construct(self, x1, x2, x3, x4, x5, x6, x7):
return x1 + x2 return x1 + x2




+ 1
- 1
model_zoo/official/cv/ssd/src/dataset.py View File

@@ -20,8 +20,8 @@ from __future__ import division
import os import os
import json import json
import xml.etree.ElementTree as et import xml.etree.ElementTree as et
import cv2
import numpy as np import numpy as np
import cv2


import mindspore.dataset as de import mindspore.dataset as de
import mindspore.dataset.transforms.vision.c_transforms as C import mindspore.dataset.transforms.vision.c_transforms as C


+ 1
- 1
model_zoo/official/cv/ssd/src/init_params.py View File

@@ -14,8 +14,8 @@
# ============================================================================ # ============================================================================
"""Parameters utils""" """Parameters utils"""


from mindspore.common.initializer import initializer, TruncatedNormal
import numpy as np import numpy as np
from mindspore.common.initializer import initializer, TruncatedNormal


def init_net_param(network, initialize_mode='TruncatedNormal'): def init_net_param(network, initialize_mode='TruncatedNormal'):
"""Init the parameters in net.""" """Init the parameters in net."""


+ 1
- 1
model_zoo/official/cv/warpctc/src/warpctc_for_train.py View File

@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""Automatic differentiation with grad clip.""" """Automatic differentiation with grad clip."""
import numpy as np
from mindspore.parallel._utils import (_get_device_num, _get_mirror_mean, from mindspore.parallel._utils import (_get_device_num, _get_mirror_mean,
_get_parallel_mode) _get_parallel_mode)
from mindspore.train.parallel_utils import ParallelMode from mindspore.train.parallel_utils import ParallelMode
@@ -24,7 +25,6 @@ from mindspore.nn.cell import Cell
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
import mindspore.nn as nn import mindspore.nn as nn
from mindspore.common.tensor import Tensor from mindspore.common.tensor import Tensor
import numpy as np


compute_norm = C.MultitypeFuncGraph("compute_norm") compute_norm = C.MultitypeFuncGraph("compute_norm")




+ 3
- 0
model_zoo/official/gnn/gat/src/gat.py View File

@@ -297,6 +297,9 @@ class AttentionHead(nn.Cell):
self.activation = activation self.activation = activation


def construct(self, input_feature, bias_mat, training=True): def construct(self, input_feature, bias_mat, training=True):
"""
Attention Head for Graph Attention Networks.
"""
if training is True: if training is True:
input_feature = self.in_drop(input_feature) input_feature = self.in_drop(input_feature)




+ 2
- 1
model_zoo/official/gnn/gat/src/utils.py View File

@@ -38,7 +38,7 @@ class MaskedSoftMaxLoss(nn.Cell):
self.num_params = len(self.params) self.num_params = len(self.params)


def construct(self, logits): def construct(self, logits):
# calc l2 loss
"""calc l2 loss"""
l2_loss = 0 l2_loss = 0
for i in range(self.num_params): for i in range(self.num_params):
l2_loss = l2_loss + self.l2_coeff * P.L2Loss()(self.params[i]) l2_loss = l2_loss + self.l2_coeff * P.L2Loss()(self.params[i])
@@ -69,6 +69,7 @@ class MaskedAccuracy(nn.Cell):
self.mask = Tensor(mask, dtype=mstype.float32) self.mask = Tensor(mask, dtype=mstype.float32)


def construct(self, logits): def construct(self, logits):
"""Calculate accuracy"""
logits = P.Reshape()(logits, (-1, self.num_class)) logits = P.Reshape()(logits, (-1, self.num_class))
labels = P.Reshape()(self.label, (-1, self.num_class)) labels = P.Reshape()(self.label, (-1, self.num_class))
mask = P.Reshape()(self.mask, (-1,)) mask = P.Reshape()(self.mask, (-1,))


+ 3
- 0
model_zoo/official/gnn/gcn/src/gcn.py View File

@@ -66,6 +66,9 @@ class GraphConvolution(nn.Cell):
self.matmul = P.MatMul() self.matmul = P.MatMul()


def construct(self, adj, input_feature): def construct(self, adj, input_feature):
"""
GCN graph convolution layer.
"""
dropout = input_feature dropout = input_feature
if self.dropout_flag: if self.dropout_flag:
dropout = self.dropout(dropout) dropout = self.dropout(dropout)


+ 1
- 0
model_zoo/official/gnn/gcn/src/metrics.py View File

@@ -39,6 +39,7 @@ class Loss(nn.Cell):
self.param = param self.param = param


def construct(self, preds): def construct(self, preds):
"""Calculate loss"""
param = self.l2_loss(self.param) param = self.l2_loss(self.param)
loss = self.weight_decay * param loss = self.weight_decay * param
preds = self.cast(preds, mstype.float32) preds = self.cast(preds, mstype.float32)


+ 1
- 0
model_zoo/official/nlp/bert/pretrain_eval.py View File

@@ -88,6 +88,7 @@ class BertPretrainEva(nn.Cell):




def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label): def construct(self, input_ids, input_mask, token_type_id, masked_pos, masked_ids, masked_weights, nsp_label):
"""Calculate prediction scores"""
bs, _ = self.shape(input_ids) bs, _ = self.shape(input_ids)
probs = self.bert(input_ids, input_mask, token_type_id, masked_pos) probs = self.bert(input_ids, input_mask, token_type_id, masked_pos)
index = self.argmax(probs) index = self.argmax(probs)


+ 3
- 1
model_zoo/official/nlp/bert/src/bert_for_finetune.py View File

@@ -99,7 +99,7 @@ class BertFinetuneCell(nn.Cell):
token_type_id, token_type_id,
label_ids, label_ids,
sens=None): sens=None):
"""Bert Finetune"""


weights = self.weights weights = self.weights
init = False init = False
@@ -195,6 +195,7 @@ class BertSquadCell(nn.Cell):
unique_id, unique_id,
is_impossible, is_impossible,
sens=None): sens=None):
"""BertSquad"""
weights = self.weights weights = self.weights
init = self.alloc_status() init = self.alloc_status()
loss = self.network(input_ids, loss = self.network(input_ids,
@@ -313,6 +314,7 @@ class BertSquad(nn.Cell):
self.squeeze = P.Squeeze(axis=-1) self.squeeze = P.Squeeze(axis=-1)


def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible): def construct(self, input_ids, input_mask, token_type_id, start_position, end_position, unique_id, is_impossible):
"""interface for SQuAD finetuning task"""
logits = self.bert(input_ids, input_mask, token_type_id) logits = self.bert(input_ids, input_mask, token_type_id)
if self.is_training: if self.is_training:
unstacked_logits_0 = self.squeeze(logits[:, :, 0:1]) unstacked_logits_0 = self.squeeze(logits[:, :, 0:1])


+ 2
- 0
model_zoo/official/nlp/bert/src/bert_for_pre_training.py View File

@@ -103,6 +103,7 @@ class GetMaskedLMOutput(nn.Cell):
input_tensor, input_tensor,
output_weights, output_weights,
positions): positions):
"""Get output log_probs"""
flat_offsets = self.reshape( flat_offsets = self.reshape(
self.rng * self.seq_length_tensor, self.shape_flat_offsets) self.rng * self.seq_length_tensor, self.shape_flat_offsets)
flat_position = self.reshape(positions + flat_offsets, self.last_idx) flat_position = self.reshape(positions + flat_offsets, self.last_idx)
@@ -248,6 +249,7 @@ class BertNetworkWithLoss(nn.Cell):
masked_lm_positions, masked_lm_positions,
masked_lm_ids, masked_lm_ids,
masked_lm_weights): masked_lm_weights):
"""Get pre-training loss"""
prediction_scores, seq_relationship_score = \ prediction_scores, seq_relationship_score = \
self.bert(input_ids, input_mask, token_type_id, masked_lm_positions) self.bert(input_ids, input_mask, token_type_id, masked_lm_positions)
total_loss = self.loss(prediction_scores, seq_relationship_score, total_loss = self.loss(prediction_scores, seq_relationship_score,


+ 7
- 3
model_zoo/official/nlp/bert/src/bert_model.py View File

@@ -137,6 +137,7 @@ class EmbeddingLookup(nn.Cell):
self.shape = tuple(embedding_shape) self.shape = tuple(embedding_shape)


def construct(self, input_ids): def construct(self, input_ids):
"""Get output and embeddings lookup table"""
extended_ids = self.expand(input_ids, -1) extended_ids = self.expand(input_ids, -1)
flat_ids = self.reshape(extended_ids, self.shape_flat) flat_ids = self.reshape(extended_ids, self.shape_flat)
if self.use_one_hot_embeddings: if self.use_one_hot_embeddings:
@@ -205,6 +206,7 @@ class EmbeddingPostprocessor(nn.Cell):
name='full_position_embeddings') name='full_position_embeddings')


def construct(self, token_type_ids, word_embeddings): def construct(self, token_type_ids, word_embeddings):
"""Postprocessors apply positional and token type embeddings to word embeddings."""
output = word_embeddings output = word_embeddings
if self.use_token_type: if self.use_token_type:
flat_ids = self.reshape(token_type_ids, self.shape_flat) flat_ids = self.reshape(token_type_ids, self.shape_flat)
@@ -288,6 +290,7 @@ class RelaPosMatrixGenerator(nn.Cell):
self.cast = P.Cast() self.cast = P.Cast()


def construct(self): def construct(self):
"""Generates matrix of relative positions between inputs."""
range_vec_row_out = self.cast(F.tuple_to_array(F.make_range(self._length)), mstype.int32) range_vec_row_out = self.cast(F.tuple_to_array(F.make_range(self._length)), mstype.int32)
range_vec_col_out = self.range_mat(range_vec_row_out, (self._length, -1)) range_vec_col_out = self.range_mat(range_vec_row_out, (self._length, -1))
tile_row_out = self.tile(range_vec_row_out, (self._length,)) tile_row_out = self.tile(range_vec_row_out, (self._length,))
@@ -342,9 +345,9 @@ class RelaPosEmbeddingsGenerator(nn.Cell):
self.matmul = P.BatchMatMul() self.matmul = P.BatchMatMul()


def construct(self): def construct(self):
"""Generate embedding for each relative position of dimension depth."""
relative_positions_matrix_out = self.relative_positions_matrix() relative_positions_matrix_out = self.relative_positions_matrix()


# Generate embedding for each relative position of dimension depth.
if self.use_one_hot_embeddings: if self.use_one_hot_embeddings:
flat_relative_positions_matrix = self.reshape(relative_positions_matrix_out, (-1,)) flat_relative_positions_matrix = self.reshape(relative_positions_matrix_out, (-1,))
one_hot_relative_positions_matrix = self.one_hot( one_hot_relative_positions_matrix = self.one_hot(
@@ -495,7 +498,7 @@ class BertAttention(nn.Cell):
use_one_hot_embeddings=use_one_hot_embeddings) use_one_hot_embeddings=use_one_hot_embeddings)


def construct(self, from_tensor, to_tensor, attention_mask): def construct(self, from_tensor, to_tensor, attention_mask):
# reshape 2d/3d input tensors to 2d
"""reshape 2d/3d input tensors to 2d"""
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d) from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d) to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
query_out = self.query_layer(from_tensor_2d) query_out = self.query_layer(from_tensor_2d)
@@ -784,6 +787,7 @@ class BertTransformer(nn.Cell):
self.out_shape = (batch_size, seq_length, hidden_size) self.out_shape = (batch_size, seq_length, hidden_size)


def construct(self, input_tensor, attention_mask): def construct(self, input_tensor, attention_mask):
"""Multi-layer bert transformer."""
prev_output = self.reshape(input_tensor, self.shape) prev_output = self.reshape(input_tensor, self.shape)


all_encoder_layers = () all_encoder_layers = ()
@@ -915,7 +919,7 @@ class BertModel(nn.Cell):
self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask(config) self._create_attention_mask_from_input_mask = CreateAttentionMaskFromInputMask(config)


def construct(self, input_ids, token_type_ids, input_mask): def construct(self, input_ids, token_type_ids, input_mask):
"""Bidirectional Encoder Representations from Transformers."""
# embedding # embedding
if not self.token_type_ids_from_dataset: if not self.token_type_ids_from_dataset:
token_type_ids = self.token_type_ids token_type_ids = self.token_type_ids


+ 1
- 0
model_zoo/official/nlp/bert/src/finetune_eval_model.py View File

@@ -110,6 +110,7 @@ class BertNERModel(nn.Cell):
self.origin_shape = (config.batch_size, config.seq_length, self.num_labels) self.origin_shape = (config.batch_size, config.seq_length, self.num_labels)


def construct(self, input_ids, input_mask, token_type_id): def construct(self, input_ids, input_mask, token_type_id):
"""Return the final logits as the results of log_softmax."""
sequence_output, _, _ = \ sequence_output, _, _ = \
self.bert(input_ids, token_type_id, input_mask) self.bert(input_ids, token_type_id, input_mask)
seq = self.dropout(sequence_output) seq = self.dropout(sequence_output)


+ 2
- 1
model_zoo/official/nlp/bert/src/fused_layer_norm.py View File

@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""fused layernorm""" """fused layernorm"""
import numpy as np
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
@@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore.nn.cell import Cell from mindspore.nn.cell import Cell


import numpy as np




__all__ = ['FusedLayerNorm'] __all__ = ['FusedLayerNorm']
@@ -101,6 +101,7 @@ class FusedLayerNorm(Cell):
self.use_batch_norm = use_batch_norm self.use_batch_norm = use_batch_norm


def construct(self, input_x): def construct(self, input_x):
"""Applies Layer Normalization over a mini-batch of inputs"""
if self.use_batch_norm and self.training: if self.use_batch_norm and self.training:
ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0) ones = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 1.0)
zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0) zeros = P.Fill()(mstype.float32, F.shape(input_x)[:self.begin_norm_axis], 0.0)


+ 1
- 0
model_zoo/official/nlp/mass/src/transformer/components.py View File

@@ -52,6 +52,7 @@ class LayerNorm(nn.Cell):
self.get_shape = P.Shape() self.get_shape = P.Shape()


def construct(self, input_tensor): def construct(self, input_tensor):
"""layer norm"""
shape = self.get_shape(input_tensor) shape = self.get_shape(input_tensor)
batch_size = shape[0] batch_size = shape[0]
max_len = shape[1] max_len = shape[1]


+ 1
- 1
model_zoo/official/nlp/tinybert/src/fused_layer_norm.py View File

@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""fused layernorm""" """fused layernorm"""
import numpy as np
from mindspore.ops import operations as P from mindspore.ops import operations as P
from mindspore.ops import functional as F from mindspore.ops import functional as F
from mindspore.common.parameter import Parameter from mindspore.common.parameter import Parameter
@@ -21,7 +22,6 @@ from mindspore.ops.primitive import constexpr
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
from mindspore.nn.cell import Cell from mindspore.nn.cell import Cell


import numpy as np




__all__ = ['FusedLayerNorm'] __all__ = ['FusedLayerNorm']


+ 1
- 0
model_zoo/official/nlp/transformer/src/beam_search.py View File

@@ -241,6 +241,7 @@ class BeamSearchDecoder(nn.Cell):
return cur_input_ids, state_log_probs, state_seq, state_finished, state_length return cur_input_ids, state_log_probs, state_seq, state_finished, state_length


def construct(self, enc_states, enc_attention_mask): def construct(self, enc_states, enc_attention_mask):
"""Get beam search result."""
cur_input_ids = self.start_ids cur_input_ids = self.start_ids
# beam search states # beam search states
state_log_probs = self.init_scores state_log_probs = self.init_scores


+ 1
- 1
model_zoo/official/nlp/transformer/src/transformer_for_train.py View File

@@ -55,7 +55,7 @@ class ClipGradients(nn.Cell):
grads, grads,
clip_type, clip_type,
clip_value): clip_value):
# return grads
"""return grads"""
if clip_type != 0 and clip_type != 1: if clip_type != 0 and clip_type != 1:
return grads return grads




+ 11
- 2
model_zoo/official/nlp/transformer/src/transformer_model.py View File

@@ -131,6 +131,7 @@ class EmbeddingLookup(nn.Cell):
self.shape = P.Shape() self.shape = P.Shape()


def construct(self, input_ids): def construct(self, input_ids):
"""Get a embeddings lookup table with a fixed dictionary and size."""
input_shape = self.shape(input_ids) input_shape = self.shape(input_ids)


flat_ids = self.reshape(input_ids, self.shape_flat) flat_ids = self.reshape(input_ids, self.shape_flat)
@@ -200,6 +201,7 @@ class EmbeddingPostprocessor(nn.Cell):
self.shape = P.Shape() self.shape = P.Shape()


def construct(self, word_embeddings): def construct(self, word_embeddings):
"""Postprocessors apply positional embeddings to word embeddings."""
input_shape = self.shape(word_embeddings) input_shape = self.shape(word_embeddings)
input_len = input_shape[1] input_len = input_shape[1]


@@ -377,7 +379,7 @@ class MultiheadAttention(nn.Cell):
self.softmax_cast = P.Cast() self.softmax_cast = P.Cast()


def construct(self, from_tensor, to_tensor, attention_mask=None): def construct(self, from_tensor, to_tensor, attention_mask=None):
# reshape 2d/3d input tensors to 2d
"""reshape 2d/3d input tensors to 2d"""
from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d) from_tensor_2d = self.reshape(from_tensor, self.shape_from_2d)
to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d) to_tensor_2d = self.reshape(to_tensor, self.shape_to_2d)
query_out = self.query_layer(from_tensor_2d) query_out = self.query_layer(from_tensor_2d)
@@ -476,6 +478,7 @@ class SelfAttention(nn.Cell):
self.reshape = P.Reshape() self.reshape = P.Reshape()
self.shape = (-1, hidden_size) self.shape = (-1, hidden_size)
def construct(self, input_tensor, memory_tensor, attention_mask): def construct(self, input_tensor, memory_tensor, attention_mask):
"""Apply self-attention."""
input_tensor = self.reshape(input_tensor, self.shape) input_tensor = self.reshape(input_tensor, self.shape)
memory_tensor = self.reshape(memory_tensor, self.shape) memory_tensor = self.reshape(memory_tensor, self.shape)


@@ -831,6 +834,7 @@ class CreateAttentionMaskFromInputMask(nn.Cell):
self.batch_matmul = P.BatchMatMul() self.batch_matmul = P.BatchMatMul()


def construct(self, input_mask): def construct(self, input_mask):
"""Create attention mask according to input mask."""
input_shape = self.shape(input_mask) input_shape = self.shape(input_mask)
shape_right = (input_shape[0], 1, input_shape[1]) shape_right = (input_shape[0], 1, input_shape[1])
shape_left = input_shape + (1,) shape_left = input_shape + (1,)
@@ -876,6 +880,7 @@ class PredLogProbs(nn.Cell):
def construct(self, def construct(self,
input_tensor, input_tensor,
output_weights): output_weights):
"""Get log probs."""
input_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor) input_tensor = self.reshape(input_tensor, self.shape_flat_sequence_tensor)
input_tensor = self.cast(input_tensor, self.compute_type) input_tensor = self.cast(input_tensor, self.compute_type)
output_weights = self.cast(output_weights, self.compute_type) output_weights = self.cast(output_weights, self.compute_type)
@@ -962,7 +967,10 @@ class TransformerDecoderStep(nn.Cell):
self.cast_compute_type = CastWrapper(dst_type=compute_type) self.cast_compute_type = CastWrapper(dst_type=compute_type)


def construct(self, input_ids, enc_states, enc_attention_mask): def construct(self, input_ids, enc_states, enc_attention_mask):
# input_ids: [batch_size * beam_width]
"""
Multi-layer transformer decoder step.
input_ids: [batch_size * beam_width]
"""
# process embedding # process embedding
input_embedding, embedding_tables = self.tfm_embedding_lookup(input_ids) input_embedding, embedding_tables = self.tfm_embedding_lookup(input_ids)
input_embedding = self.tfm_embedding_processor(input_embedding) input_embedding = self.tfm_embedding_processor(input_embedding)
@@ -1122,6 +1130,7 @@ class TransformerModel(nn.Cell):
self.encdec_mask = Tensor(ones, dtype=mstype.float32) self.encdec_mask = Tensor(ones, dtype=mstype.float32)


def construct(self, source_ids, source_mask, target_ids=None, target_mask=None): def construct(self, source_ids, source_mask, target_ids=None, target_mask=None):
"""Transformer with encoder and decoder."""
# process source sentence # process source sentence
src_word_embeddings, embedding_tables = self.tfm_embedding_lookup(source_ids) src_word_embeddings, embedding_tables = self.tfm_embedding_lookup(source_ids)
src_embedding_output = self.tfm_embedding_postprocessor_for_encoder(src_word_embeddings) src_embedding_output = self.tfm_embedding_postprocessor_for_encoder(src_word_embeddings)


+ 1
- 0
model_zoo/official/nlp/transformer/train.py View File

@@ -69,6 +69,7 @@ class LossCallBack(Callback):
time_stamp_init = True time_stamp_init = True


def step_end(self, run_context): def step_end(self, run_context):
"""Monitor the loss in training."""
global time_stamp_first global time_stamp_first
time_stamp_current = get_ms_timestamp() time_stamp_current = get_ms_timestamp()
cb_params = run_context.original_args() cb_params = run_context.original_args()


+ 1
- 0
model_zoo/official/recommend/deepfm/src/callback.py View File

@@ -68,6 +68,7 @@ class LossCallBack(Callback):
self._per_print_times = per_print_times self._per_print_times = per_print_times


def step_end(self, run_context): def step_end(self, run_context):
"""Monitor the loss in training."""
cb_params = run_context.original_args() cb_params = run_context.original_args()
loss = cb_params.net_outputs.asnumpy() loss = cb_params.net_outputs.asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1


+ 1
- 1
model_zoo/official/recommend/deepfm/src/dataset.py View File

@@ -19,8 +19,8 @@ import os
import math import math
from enum import Enum from enum import Enum


import pandas as pd
import numpy as np import numpy as np
import pandas as pd
import mindspore.dataset.engine as de import mindspore.dataset.engine as de
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype




+ 1
- 0
model_zoo/official/recommend/deepfm/src/deepfm.py View File

@@ -147,6 +147,7 @@ class DenseLayer(nn.Cell):
return act_func return act_func


def construct(self, x): def construct(self, x):
"""Dense Layer for Deep Layer of DeepFM Model."""
x = self.act_func(x) x = self.act_func(x)
if self.training: if self.training:
x = self.dropout(x) x = self.dropout(x)


+ 1
- 0
model_zoo/official/recommend/wide_and_deep/src/callbacks.py View File

@@ -47,6 +47,7 @@ class LossCallBack(Callback):
self.config = config self.config = config


def step_end(self, run_context): def step_end(self, run_context):
"""Monitor the loss in training."""
cb_params = run_context.original_args() cb_params = run_context.original_args()
wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy() wide_loss, deep_loss = cb_params.net_outputs[0].asnumpy(), cb_params.net_outputs[1].asnumpy()
cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1 cur_step_in_epoch = (cb_params.cur_step_num - 1) % cb_params.batch_num + 1


+ 1
- 1
model_zoo/official/recommend/wide_and_deep/src/wide_and_deep.py View File

@@ -13,6 +13,7 @@
# limitations under the License. # limitations under the License.
# ============================================================================ # ============================================================================
"""wide and deep model""" """wide and deep model"""
import numpy as np
from mindspore import nn from mindspore import nn
from mindspore import Parameter, ParameterTuple from mindspore import Parameter, ParameterTuple
import mindspore.common.dtype as mstype import mindspore.common.dtype as mstype
@@ -28,7 +29,6 @@ from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_
from mindspore.train.parallel_utils import ParallelMode from mindspore.train.parallel_utils import ParallelMode
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
from mindspore.communication.management import get_group_size from mindspore.communication.management import get_group_size
import numpy as np
np_type = np.float32 np_type = np.float32
ms_type = mstype.float32 ms_type = mstype.float32


Loading…
Cancel
Save