| @@ -1,31 +0,0 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_LITE_COMMON_OP_UTILS_H_ | |||
| #define MINDSPORE_LITE_COMMON_OP_UTILS_H_ | |||
| #include <functional> | |||
| #include <string> | |||
| #include "schema/model_generated.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| inline schema::PrimitiveType GetOpType(const schema::CNode &opDef) { return opDef.primitive()->value_type(); } | |||
| inline std::string GetOpTypeName(const schema::CNode &opDef) { return schema::EnumNamePrimitiveType(GetOpType(opDef)); } | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_LITE_COMMON_OP_UTILS_H_ | |||
| @@ -44,7 +44,7 @@ int Executor::Run(std::vector<Tensor *> &in_tensors, std::vector<Tensor *> &out_ | |||
| } | |||
| kernel::LiteKernelUtil::InitTensorRefCount(kernels); | |||
| for (auto out_tensor : out_tensors) { // increase RefCount of output tensors, such that Run will not free them | |||
| out_tensor->SetRefCount(out_tensor->RefCount() + 1); | |||
| out_tensor->set_ref_count(out_tensor->ref_count() + 1); | |||
| } | |||
| for (auto *kernel : kernels) { | |||
| @@ -101,7 +101,7 @@ int Executor::TransformTensorLayoutFp32(Tensor *tensor, schema::Format dst_forma | |||
| return RET_ERROR; | |||
| } | |||
| PackNC4HW4ToNHWCFp32(src_data, dst_data, tensor->Batch(), tensor->Height() * tensor->Width(), tensor->Channel()); | |||
| tensor->SetData(dst_data); | |||
| tensor->set_data(dst_data); | |||
| tensor->SetFormat(dst_format); | |||
| allocator->Free(src_data); | |||
| return RET_OK; | |||
| @@ -39,14 +39,14 @@ void LiteKernel::FreeWorkspace() { | |||
| void LiteKernel::InitOutTensorRefCount() { | |||
| for (auto *tensor : this->out_tensors_) { | |||
| tensor->SetRefCount(this->out_kernels_.size()); | |||
| tensor->set_ref_count(this->out_kernels_.size()); | |||
| } | |||
| } | |||
| int LiteKernel::DecOutTensorRefCount() { | |||
| for (auto *tensor : this->out_tensors_) { | |||
| tensor->decRefCount(); | |||
| if (0 >= tensor->RefCount()) { | |||
| tensor->DecRefCount(); | |||
| if (0 >= tensor->ref_count()) { | |||
| auto ret = tensor->FreeData(); | |||
| if (0 != ret) { | |||
| MS_LOG(ERROR) << "Free tensor data failed"; | |||
| @@ -190,8 +190,7 @@ std::vector<lite::Tensor *> LiteKernelUtil::SubgraphInputTensors(const std::vect | |||
| for (const auto &kernel : input_kernels) { | |||
| for (const auto &tensor : kernel->in_tensors()) { | |||
| auto iter = std::find(all_output_tensors.begin(), all_output_tensors.end(), tensor); | |||
| if (iter == all_output_tensors.end() && | |||
| !(tensor->category() == mindspore::lite::Tensor::CONST && tensor->data_c() != nullptr)) { | |||
| if (iter == all_output_tensors.end() && !tensor->IsConst()) { | |||
| input_tensors.emplace_back(tensor); | |||
| } | |||
| } | |||
| @@ -61,11 +61,12 @@ int LiteSession::ConvertTensors(const lite::Model *model) { | |||
| MS_LOG(ERROR) << i << "th tensor in model is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| auto src_category = TensorCategory(srcTensor); | |||
| std::vector<int> shape; | |||
| if (srcTensor->dims() == nullptr) { | |||
| MS_LOG(DEBUG) << "Dims of " << i << "th tensor is nullptr"; | |||
| } else { | |||
| if (TensorCategory(srcTensor) == Tensor::Category::CONST) { | |||
| if (src_category == Tensor::Category::CONST_TENSOR) { | |||
| if (srcTensor->dataType() == kObjectTypeString && srcTensor->data() != nullptr) { | |||
| shape.push_back(srcTensor->data()->size()); | |||
| } else { | |||
| @@ -76,18 +77,13 @@ int LiteSession::ConvertTensors(const lite::Model *model) { | |||
| } | |||
| } | |||
| int dataType = srcTensor->dataType(); | |||
| auto *dstTensor = | |||
| new (std::nothrow) Tensor(TypeId(dataType), shape, srcTensor->format(), TensorCategory(srcTensor)); | |||
| auto *dstTensor = new (std::nothrow) Tensor(TypeId(dataType), shape, srcTensor->format(), src_category); | |||
| if (dstTensor == nullptr) { | |||
| MS_LOG(ERROR) << "new " << i << "th tensor failed"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| if (TensorCategory(srcTensor) == Tensor::Category::CONST && srcTensor->data() != nullptr && | |||
| srcTensor->data()->size() > 0) { | |||
| if (shape.empty()) { | |||
| shape.push_back(1); | |||
| dstTensor->set_shape(shape); | |||
| } | |||
| if ((src_category == Tensor::Category::CONST_TENSOR || src_category == Tensor::Category::CONST_SCALAR) && | |||
| srcTensor->data() != nullptr && srcTensor->data()->size() > 0) { | |||
| MS_ASSERT(dstTensor->Size() == srcTensor->data()->size()); | |||
| if (WeightTensorNeedCopy(model, i)) { | |||
| auto dst_data = dstTensor->MutableData(); | |||
| @@ -99,7 +95,7 @@ int LiteSession::ConvertTensors(const lite::Model *model) { | |||
| memcpy(dst_data, srcTensor->data()->data(), dstTensor->Size()); | |||
| copyed_tensor_idxes_.emplace_back(i); | |||
| } else { | |||
| dstTensor->SetData(const_cast<unsigned char *>(srcTensor->data()->data())); | |||
| dstTensor->set_data(const_cast<unsigned char *>(srcTensor->data()->data())); | |||
| } | |||
| } | |||
| auto quant_params = srcTensor->quantParams(); | |||
| @@ -395,7 +391,7 @@ void LiteSession::BindThread(bool if_bind) { | |||
| MS_LOG(ERROR) << "Device list is empty."; | |||
| return; | |||
| } | |||
| if (this->context_->IsCpuEnabled()) { | |||
| if (!this->context_->IsCpuEnabled()) { | |||
| return; | |||
| } | |||
| auto cpu_device_info = this->context_->GetCpuInfo(); | |||
| @@ -415,9 +411,8 @@ LiteSession::~LiteSession() { | |||
| auto *tensor = tensors_.at(i); | |||
| MS_ASSERT(tensor != nullptr); | |||
| // data of weight tensor of node in packed_op can not be to free, we will free weight data when freeing meta_graph | |||
| if (tensor->category() == Tensor::Category::CONST && !IsContain(this->inputs_, tensor) && | |||
| !IsContain(copyed_tensor_idxes_, i)) { | |||
| tensor->SetData(nullptr); | |||
| if (tensor->IsConst() && !IsContain(this->inputs_, tensor) && !IsContain(copyed_tensor_idxes_, i)) { | |||
| tensor->set_data(nullptr); | |||
| } | |||
| delete tensor; | |||
| } | |||
| @@ -50,14 +50,14 @@ kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::T | |||
| MS_LOG(ERROR) << "dequant data is nullptr."; | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto kernel = new (std::nothrow) FullconnectionCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (!kernel) { | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -69,13 +69,13 @@ kernel::LiteKernel *CpuFullConnectionFp32KernelCreator(const std::vector<lite::T | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -150,7 +150,7 @@ kernel::LiteKernel *CpuConvDwFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto conv_param = reinterpret_cast<ConvParameter *>(opParameter); | |||
| @@ -165,7 +165,7 @@ kernel::LiteKernel *CpuConvDwFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -177,13 +177,13 @@ kernel::LiteKernel *CpuConvDwFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -192,7 +192,7 @@ kernel::LiteKernel *CpuConvFp16KernelCreator(const std::vector<lite::Tensor *> & | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto conv_param = reinterpret_cast<ConvParameter *>(opParameter); | |||
| @@ -224,7 +224,7 @@ kernel::LiteKernel *CpuConvFp16KernelCreator(const std::vector<lite::Tensor *> & | |||
| MS_LOG(DEBUG) << "Create conv fp16 kernel failed."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -236,13 +236,13 @@ kernel::LiteKernel *CpuConvFp16KernelCreator(const std::vector<lite::Tensor *> & | |||
| << ", type: " << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -214,7 +214,7 @@ kernel::LiteKernel *CpuDeconvDwFp16KernelCreator(const std::vector<lite::Tensor | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto kernel = new (std::nothrow) DeconvolutionDepthwiseFp16CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| @@ -222,7 +222,7 @@ kernel::LiteKernel *CpuDeconvDwFp16KernelCreator(const std::vector<lite::Tensor | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -234,13 +234,13 @@ kernel::LiteKernel *CpuDeconvDwFp16KernelCreator(const std::vector<lite::Tensor | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -226,7 +226,7 @@ kernel::LiteKernel *CpuDeConvFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| kernel::LiteKernel *kernel; | |||
| @@ -242,7 +242,7 @@ kernel::LiteKernel *CpuDeConvFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -254,13 +254,13 @@ kernel::LiteKernel *CpuDeConvFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -247,14 +247,14 @@ kernel::LiteKernel *CpuFullConnectionFp16KernelCreator(const std::vector<lite::T | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto *kernel = new (std::nothrow) FullconnectionFP16CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -266,13 +266,13 @@ kernel::LiteKernel *CpuFullConnectionFp16KernelCreator(const std::vector<lite::T | |||
| delete kernel; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -260,14 +260,14 @@ kernel::LiteKernel *CpuMatmulFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| return nullptr; | |||
| } | |||
| weight_tensor->set_data_type(kNumberTypeFloat32); | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto *kernel = new (std::nothrow) MatmulFP16CPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| if (kernel == nullptr) { | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -279,13 +279,13 @@ kernel::LiteKernel *CpuMatmulFp16KernelCreator(const std::vector<lite::Tensor *> | |||
| delete kernel; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -225,8 +225,8 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor | |||
| new_inputs.emplace_back(in_tensor); | |||
| // nwe weight | |||
| auto filter_tensor = new (std::nothrow) | |||
| lite::Tensor(inputs.at(kWeightIndex)->data_type(), filter_shape, Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto filter_tensor = new (std::nothrow) lite::Tensor(inputs.at(kWeightIndex)->data_type(), filter_shape, | |||
| Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| filter_tensor->MallocData(); | |||
| int copy_length = kernel_h * kernel_w * new_in_channel * new_out_channel; | |||
| memcpy(filter_tensor->data_c(), origin_weight + i * copy_length, copy_length * sizeof(float)); | |||
| @@ -235,7 +235,7 @@ kernel::LiteKernel *CpuGroupConvFp32KernelCreator(const std::vector<lite::Tensor | |||
| // if has bias, set new bias | |||
| if (has_bias) { | |||
| auto bias_tensor = new (std::nothrow) | |||
| lite::Tensor(inputs.at(kBiasIndex)->data_type(), bias_shape, Format_NHWC, lite::Tensor::Category::CONST); | |||
| lite::Tensor(inputs.at(kBiasIndex)->data_type(), bias_shape, Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_tensor->MallocData(); | |||
| memcpy(bias_tensor->data_c(), origin_bias + i * new_out_channel, new_out_channel * sizeof(float)); | |||
| new_inputs.emplace_back(bias_tensor); | |||
| @@ -293,7 +293,7 @@ kernel::LiteKernel *CpuConvFp32KernelCreator(const std::vector<lite::Tensor *> & | |||
| free(op_parameter); | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| kernel::LiteKernel *kernel; | |||
| @@ -307,7 +307,7 @@ kernel::LiteKernel *CpuConvFp32KernelCreator(const std::vector<lite::Tensor *> & | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(op_parameter); | |||
| return nullptr; | |||
| @@ -319,14 +319,14 @@ kernel::LiteKernel *CpuConvFp32KernelCreator(const std::vector<lite::Tensor *> & | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(op_parameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| @@ -132,7 +132,7 @@ kernel::LiteKernel *CpuConvDwFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto conv_param = reinterpret_cast<ConvParameter *>(opParameter); | |||
| @@ -146,7 +146,7 @@ kernel::LiteKernel *CpuConvDwFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (weight_tensor->data_type() == kNumberTypeInt8 || weight_tensor->data_type() == kNumberTypeInt16) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -158,14 +158,14 @@ kernel::LiteKernel *CpuConvDwFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (weight_tensor->data_type() == kNumberTypeInt8 || weight_tensor->data_type() == kNumberTypeInt16) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (weight_tensor->data_type() == kNumberTypeInt8 || weight_tensor->data_type() == kNumberTypeInt16) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| @@ -243,7 +243,7 @@ kernel::LiteKernel *CpuDeConvFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| kernel::LiteKernel *kernel; | |||
| @@ -259,7 +259,7 @@ kernel::LiteKernel *CpuDeConvFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -271,14 +271,14 @@ kernel::LiteKernel *CpuDeConvFp32KernelCreator(const std::vector<lite::Tensor *> | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| @@ -205,7 +205,7 @@ kernel::LiteKernel *CpuDeconvDwFp32KernelCreator(const std::vector<lite::Tensor | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto kernel = | |||
| new (std::nothrow) kernel::DeconvolutionDepthwiseCPUKernel(opParameter, inputs, outputs, ctx, primitive); | |||
| @@ -213,7 +213,7 @@ kernel::LiteKernel *CpuDeconvDwFp32KernelCreator(const std::vector<lite::Tensor | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -225,13 +225,13 @@ kernel::LiteKernel *CpuDeconvDwFp32KernelCreator(const std::vector<lite::Tensor | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (dequant_flag) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| } | |||
| @@ -217,7 +217,7 @@ kernel::LiteKernel *CpuMatmulInt8KernelCreator(const std::vector<lite::Tensor *> | |||
| free(opParameter); | |||
| return nullptr; | |||
| } | |||
| weight_tensor->SetData(dequant_weight); | |||
| weight_tensor->set_data(dequant_weight); | |||
| } | |||
| auto input_tensor = inputs.at(kInputIndex); | |||
| @@ -230,7 +230,7 @@ kernel::LiteKernel *CpuMatmulInt8KernelCreator(const std::vector<lite::Tensor *> | |||
| MS_LOG(ERROR) << "kernel is nullptr."; | |||
| if (is_const_quant_weight) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| free(opParameter); | |||
| return nullptr; | |||
| @@ -242,14 +242,14 @@ kernel::LiteKernel *CpuMatmulInt8KernelCreator(const std::vector<lite::Tensor *> | |||
| << schema::EnumNamePrimitiveType(static_cast<schema::PrimitiveType>(opParameter->type_)); | |||
| if (is_const_quant_weight) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return nullptr; | |||
| } | |||
| if (is_const_quant_weight) { | |||
| weight_tensor->FreeData(); | |||
| weight_tensor->SetData(restore_data); | |||
| weight_tensor->set_data(restore_data); | |||
| } | |||
| return kernel; | |||
| @@ -71,7 +71,7 @@ int ArithmeticOpenCLKernel::InitBuffer() { | |||
| for (auto in_tensor_ : in_tensors_) { | |||
| auto nhwc_shape = GetNHWCShape(in_tensor_->shape()); | |||
| inputs_nhwc_shapes_.push_back(nhwc_shape); | |||
| if (in_tensor_->category() != lite::Tensor::Category::CONST || in_tensor_->data_c() == nullptr) { | |||
| if (!in_tensor_->IsConst()) { | |||
| inputs_weight_ptrs_.push_back(nullptr); | |||
| } else { | |||
| auto allocator = ocl_runtime_->GetAllocator(); | |||
| @@ -63,7 +63,7 @@ int ScaleOpenCLKernel::InitBuffer() { | |||
| if (!element_flag_) { | |||
| return RET_OK; | |||
| } | |||
| if (in_tensors_[1]->category() == lite::Tensor::Category::CONST && in_tensors_[1]->data_c() != nullptr) { | |||
| if (in_tensors_[1]->IsConst()) { | |||
| auto allocator = ocl_runtime_->GetAllocator(); | |||
| std::vector<size_t> img_size; | |||
| GetImageSize(0, &img_size); | |||
| @@ -209,7 +209,7 @@ int SubGraphOpenCLKernel::MallocTensorWithReuse() { | |||
| std::vector<size_t> img_size; | |||
| op_kernel->GetImageSize(i, &img_size); | |||
| auto data_ptr = allocator_->Malloc(output->Size(), img_size); | |||
| output->SetData(data_ptr); | |||
| output->set_data(data_ptr); | |||
| } else { | |||
| output->MallocData(allocator_); | |||
| } | |||
| @@ -46,7 +46,7 @@ int OpenCLExecutor::Run(std::vector<Tensor *> &inputs, std::vector<Tensor *> &ou | |||
| std::vector<size_t> img_size; | |||
| op_kernel->GetImageSize(i, &img_size); | |||
| auto data_ptr = allocator_->Malloc(output->Size(), img_size); | |||
| output->SetData(data_ptr); | |||
| output->set_data(data_ptr); | |||
| } else { | |||
| output->MallocData(allocator_); | |||
| } | |||
| @@ -315,7 +315,7 @@ void Scheduler::SetKernelTensorDataType(kernel::LiteKernel *kernel) { | |||
| } | |||
| } else if (kernel->desc().data_type == kNumberTypeFloat32) { | |||
| for (auto tensor : kernel->in_tensors()) { | |||
| if (tensor->category() != Tensor::Category::CONST && tensor->data_type() == kNumberTypeFloat16) { | |||
| if (!tensor->IsConst() && tensor->data_type() == kNumberTypeFloat16) { | |||
| tensor->set_data_type(kNumberTypeFloat32); | |||
| } | |||
| } | |||
| @@ -54,7 +54,7 @@ int Tensor::CopyTensorData(const Tensor &srcTensor) { | |||
| } | |||
| } | |||
| memcpy(this->data_, srcTensor.data_, data_size); | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| int Tensor::CopyTensor(const Tensor &srcTensor, bool copyData) { | |||
| @@ -69,7 +69,7 @@ int Tensor::CopyTensor(const Tensor &srcTensor, bool copyData) { | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| Tensor::~Tensor() { | |||
| @@ -102,7 +102,7 @@ bool Tensor::operator==(const Tensor &tensor) { | |||
| int32_t Tensor::Batch() const { | |||
| if (this->shape_.size() != 4 && this->shape_.size() != 2) { | |||
| MS_LOG(ERROR) << "Unsupported tensor shape: " << this->shape().size(); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| switch (this->format_) { | |||
| case schema::Format::Format_NHWC: | |||
| @@ -123,14 +123,14 @@ int32_t Tensor::Batch() const { | |||
| return this->shape_[1]; | |||
| default: | |||
| MS_LOG(ERROR) << "Unsupported format: " << EnumNameFormat(this->format_); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| int32_t Tensor::Channel() const { | |||
| if (this->shape_.size() != 4 && this->shape_.size() != 2) { | |||
| MS_LOG(ERROR) << "Unsupported tensor shape: " << this->shape().size(); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| switch (this->format_) { | |||
| case schema::Format::Format_NCHW: | |||
| @@ -150,14 +150,14 @@ int32_t Tensor::Channel() const { | |||
| case schema::Format::Format_CHWK: | |||
| return this->shape_[0]; | |||
| default: | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| int32_t Tensor::Height() const { | |||
| if (this->shape_.size() != 4 && this->shape_.size() != 2) { | |||
| MS_LOG(ERROR) << "Unsupported tensor shape: " << this->shape().size(); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| switch (this->format_) { | |||
| case schema::Format::Format_NCHW: | |||
| @@ -177,7 +177,7 @@ int32_t Tensor::Height() const { | |||
| return this->shape_[0]; | |||
| default: | |||
| MS_LOG(ERROR) << "Unsupported format: " << EnumNameFormat(this->format_); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| @@ -203,11 +203,28 @@ int32_t Tensor::Width() const { | |||
| case schema::Format::Format_HW4: | |||
| return this->shape_[1]; | |||
| default: | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| } | |||
| size_t Tensor::Size() const { | |||
| size_t size = DataTypeSize(this->data_type_); | |||
| size *= (format_ == schema::Format::Format_NC4HW4 || format_ == schema::Format::Format_NHWC4) ? ElementsC4Num() | |||
| : ElementsNum(); | |||
| return size; | |||
| } | |||
| int Tensor::ElementsNum() const { | |||
| if (this->category_ == CONST_SCALAR) { | |||
| return 1; | |||
| } | |||
| return std::accumulate(shape_.begin(), shape_.end(), 1LL, std::multiplies<int>()); | |||
| } | |||
| int32_t Tensor::ElementsC4Num() const { | |||
| if (this->category_ == CONST_SCALAR) { | |||
| return 1; | |||
| } | |||
| int32_t result = 0; | |||
| if (this->shape_.size() == 4) { | |||
| result = Batch() * Height() * Width() * ((Channel() + 3) / 4 * 4); | |||
| @@ -217,6 +234,16 @@ int32_t Tensor::ElementsC4Num() const { | |||
| return result; | |||
| } | |||
| int Tensor::DimensionSize(size_t index) const { | |||
| int dim_size = -1; | |||
| if (index < shape_.size()) { | |||
| dim_size = shape_[index]; | |||
| } else { | |||
| MS_LOG(ERROR) << "Dimension index is wrong: " << index; | |||
| } | |||
| return dim_size; | |||
| } | |||
| std::string Tensor::ToString() const { | |||
| std::ostringstream oss; | |||
| oss << "schema::Format: " << EnumNameFormat(this->format_); | |||
| @@ -287,7 +314,7 @@ std::string Tensor::ToString() const { | |||
| int Tensor::MallocData(mindspore::lite::Allocator *allocator) { | |||
| if (nullptr != this->data_) { | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| if (allocator != nullptr) { | |||
| allocator_ = allocator; | |||
| @@ -299,15 +326,15 @@ int Tensor::MallocData(mindspore::lite::Allocator *allocator) { | |||
| } | |||
| if (nullptr == this->data_) { | |||
| MS_LOG(ERROR) << "Malloc tensor data failed, size=" << this->Size(); | |||
| return -1; | |||
| return RET_ERROR; | |||
| } | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| int Tensor::FreeData() { | |||
| if (nullptr == this->data_) { | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| if (nullptr == allocator_) { | |||
| free(this->data_); | |||
| @@ -316,7 +343,7 @@ int Tensor::FreeData() { | |||
| allocator_->Free(this->data_); | |||
| this->data_ = nullptr; | |||
| } | |||
| return 0; | |||
| return RET_OK; | |||
| } | |||
| void *Tensor::MutableData() { | |||
| @@ -330,6 +357,12 @@ void *Tensor::MutableData() { | |||
| return this->data_; | |||
| } | |||
| bool Tensor::IsConst() { | |||
| return (this->category_ == CONST_TENSOR || this->category_ == CONST_SCALAR) && this->data_ != nullptr; | |||
| } | |||
| bool Tensor::IsScalar() { return this->category_ == CONST_SCALAR && this->data_ != nullptr; } | |||
| void Tensor::AddQuantParam(const QuantArg &quant_arg) { this->quant_params_.push_back(quant_arg); } | |||
| std::vector<QuantArg> Tensor::GetQuantParams() const { return this->quant_params_; } | |||
| @@ -42,8 +42,9 @@ struct QuantArg { | |||
| class Tensor : public mindspore::tensor::MSTensor { | |||
| public: | |||
| enum Category { | |||
| CONST, // weight tensor | |||
| VAR // activation tensor | |||
| CONST_TENSOR, // weight tensor | |||
| CONST_SCALAR, // weight scalar | |||
| VAR // activation tensor | |||
| }; | |||
| Tensor() = default; | |||
| @@ -70,19 +71,9 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| void set_shape(const std::vector<int> &shape) { shape_ = shape; } | |||
| int DimensionSize(size_t index) const override { | |||
| int dim_size = -1; | |||
| if (index < shape_.size()) { | |||
| dim_size = shape_[index]; | |||
| } else { | |||
| MS_LOG(ERROR) << "Dimension index is wrong: " << index; | |||
| } | |||
| return dim_size; | |||
| } | |||
| int DimensionSize(size_t index) const override; | |||
| int ElementsNum() const override { | |||
| return std::accumulate(shape_.begin(), shape_.end(), 1LL, std::multiplies<int>()); | |||
| } | |||
| int ElementsNum() const override; | |||
| int32_t Batch() const; | |||
| @@ -94,58 +85,7 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| int32_t ElementsC4Num() const; | |||
| size_t Size() const override { | |||
| size_t size = 0; | |||
| switch (this->data_type_) { | |||
| case kNumberTypeFloat64: | |||
| size = sizeof(double); | |||
| break; | |||
| case kNumberTypeFloat: | |||
| case kNumberTypeFloat32: | |||
| size = sizeof(float); | |||
| break; | |||
| case kNumberTypeInt8: | |||
| size = sizeof(int8_t); | |||
| break; | |||
| case kNumberTypeUInt8: | |||
| size = sizeof(uint8_t); | |||
| break; | |||
| case kNumberTypeFloat16: | |||
| size = sizeof(int16_t); | |||
| break; | |||
| case kNumberTypeInt16: | |||
| size = sizeof(int16_t); | |||
| break; | |||
| case kNumberTypeInt32: | |||
| size = sizeof(int32_t); | |||
| break; | |||
| case kNumberTypeInt64: | |||
| size = sizeof(int64_t); | |||
| break; | |||
| case kNumberTypeUInt16: | |||
| size = sizeof(uint16_t); | |||
| break; | |||
| case kNumberTypeUInt32: | |||
| size = sizeof(uint32_t); | |||
| break; | |||
| case kNumberTypeUInt64: | |||
| size = sizeof(uint64_t); | |||
| break; | |||
| case kNumberTypeBool: | |||
| size = sizeof(bool); | |||
| break; | |||
| case kObjectTypeString: | |||
| size = sizeof(char); | |||
| break; | |||
| default: | |||
| MS_LOG(ERROR) << "Not support the type: " << this->data_type_; | |||
| return 0; | |||
| } | |||
| size *= (format_ == schema::Format::Format_NC4HW4 || format_ == schema::Format::Format_NHWC4) ? ElementsC4Num() | |||
| : ElementsNum(); | |||
| return size; | |||
| } | |||
| size_t Size() const override; | |||
| void set_allocator(mindspore::lite::Allocator *allocator) { allocator_ = allocator; } | |||
| @@ -157,7 +97,7 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| void *data_c() const { return data_; } | |||
| void SetData(void *data) { this->data_ = data; } | |||
| void set_data(void *data) { this->data_ = data; } | |||
| Category category() { return this->category_; } | |||
| @@ -165,11 +105,11 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| schema::Format GetFormat() { return this->format_; } | |||
| size_t RefCount() { return this->refCount; } | |||
| size_t ref_count() { return this->ref_count_; } | |||
| void SetRefCount(size_t refCount) { this->refCount = refCount; } | |||
| void set_ref_count(size_t ref_count) { this->ref_count_ = ref_count; } | |||
| void decRefCount() { this->refCount--; } | |||
| void DecRefCount() { this->ref_count_--; } | |||
| std::string ToString() const; | |||
| @@ -177,6 +117,10 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| std::vector<QuantArg> GetQuantParams() const; | |||
| bool IsConst(); | |||
| bool IsScalar(); | |||
| void Prepare() { | |||
| if (allocator_ != nullptr) { | |||
| data_ = allocator_->Prepare(data_); | |||
| @@ -190,17 +134,63 @@ class Tensor : public mindspore::tensor::MSTensor { | |||
| std::vector<int> shape_; | |||
| schema::Format format_; | |||
| Category category_; | |||
| size_t refCount = 0; | |||
| size_t ref_count_ = 0; | |||
| std::vector<QuantArg> quant_params_; | |||
| mindspore::lite::Allocator *allocator_ = nullptr; | |||
| }; | |||
| inline Tensor::Category TensorCategory(const schema::Tensor *tensor) { | |||
| return (tensor->nodeType() == schema::NodeType::NodeType_ValueNode) ? Tensor::Category::CONST : Tensor::Category::VAR; | |||
| inline size_t DataTypeSize(const TypeId type) { | |||
| switch (type) { | |||
| case kNumberTypeFloat64: | |||
| return sizeof(double); | |||
| case kNumberTypeFloat: | |||
| case kNumberTypeFloat32: | |||
| return sizeof(float); | |||
| case kNumberTypeInt8: | |||
| return sizeof(int8_t); | |||
| case kNumberTypeUInt8: | |||
| return sizeof(uint8_t); | |||
| case kNumberTypeFloat16: | |||
| case kNumberTypeInt16: | |||
| return sizeof(int16_t); | |||
| case kNumberTypeInt32: | |||
| return sizeof(int32_t); | |||
| case kNumberTypeInt64: | |||
| return sizeof(int64_t); | |||
| case kNumberTypeUInt16: | |||
| return sizeof(uint16_t); | |||
| case kNumberTypeUInt32: | |||
| return sizeof(uint32_t); | |||
| case kNumberTypeUInt64: | |||
| return sizeof(uint64_t); | |||
| case kNumberTypeBool: | |||
| return sizeof(bool); | |||
| case kObjectTypeString: | |||
| return sizeof(char); | |||
| default: | |||
| MS_LOG(ERROR) << "Not support the type: " << type; | |||
| return 0; | |||
| } | |||
| } | |||
| inline Tensor::Category TensorCategory(const schema::NodeType node_type, const size_t shape_num, const TypeId data_type, | |||
| const size_t data_size) { | |||
| return (node_type == schema::NodeType::NodeType_ValueNode) | |||
| ? (shape_num == 0 && data_size == DataTypeSize(data_type) ? Tensor::Category::CONST_SCALAR | |||
| : Tensor::Category::CONST_TENSOR) | |||
| : Tensor::Category::VAR; | |||
| } | |||
| inline Tensor::Category TensorCategory(const schema::NodeType type) { | |||
| return (type == schema::NodeType::NodeType_ValueNode) ? Tensor::Category::CONST : Tensor::Category::VAR; | |||
| inline Tensor::Category TensorCategory(const schema::Tensor *tensor) { | |||
| if (tensor == nullptr) { | |||
| MS_LOG(ERROR) << "tensor is nullptr"; | |||
| return Tensor::VAR; | |||
| } | |||
| auto shape_num = tensor->dims() == nullptr ? 0 : tensor->dims()->size(); | |||
| auto data_size = tensor->data() == nullptr ? 0 : tensor->data()->size(); | |||
| return TensorCategory(tensor->nodeType(), shape_num, TypeId(tensor->dataType()), data_size); | |||
| } | |||
| std::vector<tensor::MSTensor *> TensorVectorCast(const std::vector<Tensor *> &src); | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| @@ -49,8 +49,8 @@ TEST_F(TestStridedSlice, StridedSlice) { | |||
| lite::Tensor out_tensor(kNumberTypeFloat32, {1, 1, 2}); | |||
| float input_data[] = {0.2390374, 0.92039955, 0.05051243, 0.49574447, 0.8355223, 0.02647042, 0.08811307, 0.4566604}; | |||
| float output_data[2] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -73,8 +73,8 @@ TEST_F(TestStridedSlice, StridedSlice) { | |||
| float expect[2] = {0.2390374, 0.05051243}; | |||
| CompareOutputData(output_data, expect, 2, 0.000001); | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSlice, StridedSliceInt8) { | |||
| @@ -82,8 +82,8 @@ TEST_F(TestStridedSlice, StridedSliceInt8) { | |||
| lite::Tensor out_tensor(kNumberTypeInt8, {2, 3, 4}); | |||
| int8_t input_data[] = {-12, -11, -10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||
| int8_t output_data[4] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -121,7 +121,7 @@ TEST_F(TestStridedSlice, StridedSliceInt8) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -43,8 +43,8 @@ class TestReduceFp16 : public mindspore::CommonTest { | |||
| }; | |||
| void TestReduceFp16::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestReduceFp16::Prepare(const std::vector<int> &input_shape, const std::vector<int> &output_shape, | |||
| @@ -54,8 +54,8 @@ void TestReduceFp16::Prepare(const std::vector<int> &input_shape, const std::vec | |||
| in_tensor_.set_shape(input_shape); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data(output_data); | |||
| bool keep_axis = false; | |||
| @@ -98,7 +98,7 @@ TEST_F(TestActivationFp32, HSwishFp32) { | |||
| lite::Tensor input0_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(8); | |||
| @@ -106,7 +106,7 @@ TEST_F(TestActivationFp32, HSwishFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| @@ -123,8 +123,8 @@ TEST_F(TestActivationFp32, HSwishFp32) { | |||
| std::vector<float> expect_output = {-0, -0.33333334, -0.33333334, 0, 0.6666667, 5, 6, 7}; | |||
| CompareOutputData(output.data(), expect_output.data(), 8, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestActivationFp32, HardTanh1) { | |||
| @@ -142,7 +142,7 @@ TEST_F(TestActivationFp32, HardTanh1) { | |||
| lite::Tensor input0_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(8); | |||
| @@ -150,7 +150,7 @@ TEST_F(TestActivationFp32, HardTanh1) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| @@ -167,8 +167,8 @@ TEST_F(TestActivationFp32, HardTanh1) { | |||
| std::vector<float> expect_output = {-1.0, -1.0, -0.5, 0.0, 0.5, 1.0, 1.0, 1.0}; | |||
| CompareOutputData(output.data(), expect_output.data(), 8, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestActivationFp32, HardTanh2) { | |||
| @@ -186,7 +186,7 @@ TEST_F(TestActivationFp32, HardTanh2) { | |||
| lite::Tensor input0_tensor; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| std::vector<float> output(8); | |||
| @@ -194,7 +194,7 @@ TEST_F(TestActivationFp32, HardTanh2) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Activation}; | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc); | |||
| @@ -211,8 +211,8 @@ TEST_F(TestActivationFp32, HardTanh2) { | |||
| std::vector<float> expect_output = {-2.0, -2.0, -1.0, 0.0, 1.0, 2.0, 2.0, 2.0}; | |||
| CompareOutputData(output.data(), expect_output.data(), 8, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -67,11 +67,11 @@ void TestArithmeticTestFp32::PrepareInt(const std::vector<int> &input0_shape, co | |||
| } | |||
| in_tensor_0_.set_data_type(kNumberTypeInt); | |||
| in_tensor_0_.SetData(input0_data); | |||
| in_tensor_0_.set_data(input0_data); | |||
| in_tensor_0_.set_shape(input0_shape); | |||
| in_tensor_1_.SetData(input1_data); | |||
| in_tensor_1_.set_data(input1_data); | |||
| in_tensor_1_.set_shape(input1_shape); | |||
| out_tensor_.SetData(output_data); | |||
| out_tensor_.set_data(output_data); | |||
| out_tensor_.set_shape(output_shape); | |||
| auto creator = lite::KernelRegistry::GetInstance()->GetCreator(desc_); | |||
| @@ -83,9 +83,9 @@ void TestArithmeticTestFp32::PrepareInt(const std::vector<int> &input0_shape, co | |||
| } | |||
| void TestArithmeticTestFp32::TearDown() { | |||
| in_tensor_0_.SetData(nullptr); | |||
| in_tensor_1_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_0_.set_data(nullptr); | |||
| in_tensor_1_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, AddTest) { | |||
| @@ -548,8 +548,8 @@ TEST_F(TestArithmeticTestFp32, MulFp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -560,7 +560,7 @@ TEST_F(TestArithmeticTestFp32, MulFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -583,9 +583,9 @@ TEST_F(TestArithmeticTestFp32, MulFp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, MulReluFp32) { | |||
| @@ -622,8 +622,8 @@ TEST_F(TestArithmeticTestFp32, MulReluFp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -634,7 +634,7 @@ TEST_F(TestArithmeticTestFp32, MulReluFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -657,9 +657,9 @@ TEST_F(TestArithmeticTestFp32, MulReluFp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, MulRelu6Fp32) { | |||
| @@ -696,8 +696,8 @@ TEST_F(TestArithmeticTestFp32, MulRelu6Fp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -708,7 +708,7 @@ TEST_F(TestArithmeticTestFp32, MulRelu6Fp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -730,9 +730,9 @@ TEST_F(TestArithmeticTestFp32, MulRelu6Fp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, MulInt0) { | |||
| @@ -1021,8 +1021,8 @@ TEST_F(TestArithmeticTestFp32, AddReluFp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -1033,7 +1033,7 @@ TEST_F(TestArithmeticTestFp32, AddReluFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -1055,9 +1055,9 @@ TEST_F(TestArithmeticTestFp32, AddReluFp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, AddRelu6Fp32) { | |||
| @@ -1094,8 +1094,8 @@ TEST_F(TestArithmeticTestFp32, AddRelu6Fp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -1106,7 +1106,7 @@ TEST_F(TestArithmeticTestFp32, AddRelu6Fp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -1127,9 +1127,9 @@ TEST_F(TestArithmeticTestFp32, AddRelu6Fp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, DivReluFp32) { | |||
| @@ -1166,8 +1166,8 @@ TEST_F(TestArithmeticTestFp32, DivReluFp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -1178,7 +1178,7 @@ TEST_F(TestArithmeticTestFp32, DivReluFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -1201,9 +1201,9 @@ TEST_F(TestArithmeticTestFp32, DivReluFp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, DivRelu6Fp32) { | |||
| @@ -1240,8 +1240,8 @@ TEST_F(TestArithmeticTestFp32, DivRelu6Fp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -1252,7 +1252,7 @@ TEST_F(TestArithmeticTestFp32, DivRelu6Fp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -1273,9 +1273,9 @@ TEST_F(TestArithmeticTestFp32, DivRelu6Fp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestArithmeticTestFp32, EqualFp32) { | |||
| @@ -1311,8 +1311,8 @@ TEST_F(TestArithmeticTestFp32, EqualFp32) { | |||
| lite::Tensor input0_tensor; | |||
| lite::Tensor input1_tensor; | |||
| input0_tensor.set_data_type(kNumberTypeFloat32); | |||
| input0_tensor.SetData(input0.data()); | |||
| input1_tensor.SetData(input1.data()); | |||
| input0_tensor.set_data(input0.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input0_tensor.set_shape(input0_shape); | |||
| input1_tensor.set_shape(input1_shape); | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| @@ -1323,7 +1323,7 @@ TEST_F(TestArithmeticTestFp32, EqualFp32) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(output_shape); | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_Eltwise}; | |||
| @@ -1343,8 +1343,8 @@ TEST_F(TestArithmeticTestFp32, EqualFp32) { | |||
| CompareOutputData(output.data(), correct_out_ptr, 24, 0.00001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -39,9 +39,9 @@ TEST_F(TestBatchnormFp32, BNTest) { | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {3}); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(12); | |||
| @@ -49,7 +49,7 @@ TEST_F(TestBatchnormFp32, BNTest) { | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm}; | |||
| @@ -71,10 +71,10 @@ TEST_F(TestBatchnormFp32, BNTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestBatchnormFp32, FusedBNTest) { | |||
| @@ -94,11 +94,11 @@ TEST_F(TestBatchnormFp32, FusedBNTest) { | |||
| lite::Tensor input2(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input3(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input4(kNumberTypeFloat32, {3}); | |||
| input0.SetData(in_data.data()); | |||
| input1.SetData(scale.data()); | |||
| input2.SetData(offset.data()); | |||
| input3.SetData(mean.data()); | |||
| input4.SetData(var.data()); | |||
| input0.set_data(in_data.data()); | |||
| input1.set_data(scale.data()); | |||
| input2.set_data(offset.data()); | |||
| input3.set_data(mean.data()); | |||
| input4.set_data(var.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0, &input1, &input2, &input3, &input4}; | |||
| std::vector<float> output(12); | |||
| @@ -106,7 +106,7 @@ TEST_F(TestBatchnormFp32, FusedBNTest) { | |||
| 5.1857452, 56.60399, -77.215096, -181.18402, 49.81066, -59.204563}; | |||
| lite::Tensor output0(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| output0.SetData(output.data()); | |||
| output0.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_FusedBatchNorm}; | |||
| @@ -127,12 +127,12 @@ TEST_F(TestBatchnormFp32, FusedBNTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0.ElementsNum(), 0.001); | |||
| input0.SetData(nullptr); | |||
| input1.SetData(nullptr); | |||
| input2.SetData(nullptr); | |||
| input3.SetData(nullptr); | |||
| input4.SetData(nullptr); | |||
| output0.SetData(nullptr); | |||
| input0.set_data(nullptr); | |||
| input1.set_data(nullptr); | |||
| input2.set_data(nullptr); | |||
| input3.set_data(nullptr); | |||
| input4.set_data(nullptr); | |||
| output0.set_data(nullptr); | |||
| } | |||
| TEST_F(TestBatchnormFp32, easyTest) { | |||
| @@ -147,9 +147,9 @@ TEST_F(TestBatchnormFp32, easyTest) { | |||
| lite::Tensor input0(kNumberTypeFloat32, {1, 1, 6, 2}); | |||
| lite::Tensor input1(kNumberTypeFloat32, {2}); | |||
| lite::Tensor input2(kNumberTypeFloat32, {2}); | |||
| input0.SetData(in_data.data()); | |||
| input1.SetData(in_data1.data()); | |||
| input2.SetData(in_data2.data()); | |||
| input0.set_data(in_data.data()); | |||
| input1.set_data(in_data1.data()); | |||
| input2.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0, &input1, &input2}; | |||
| std::vector<float> output(12); | |||
| @@ -157,7 +157,7 @@ TEST_F(TestBatchnormFp32, easyTest) { | |||
| -0.63498, -2.29971, -1.21223, -2.79965, -1.78949, -3.29959}; | |||
| lite::Tensor output0(kNumberTypeFloat32, {1, 1, 6, 2}); | |||
| output0.SetData(output.data()); | |||
| output0.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_BatchNorm}; | |||
| @@ -178,10 +178,10 @@ TEST_F(TestBatchnormFp32, easyTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0.ElementsNum(), 0.001); | |||
| input0.SetData(nullptr); | |||
| input1.SetData(nullptr); | |||
| input2.SetData(nullptr); | |||
| output0.SetData(nullptr); | |||
| input0.set_data(nullptr); | |||
| input1.set_data(nullptr); | |||
| input2.set_data(nullptr); | |||
| output0.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -27,7 +27,7 @@ class TestConstantOfShapeFp32 : public mindspore::CommonTest { | |||
| int ConstantOfShapeTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, | |||
| std::vector<int> a_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeInt32, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeInt32, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| @@ -36,7 +36,7 @@ int ConstantOfShapeTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<li | |||
| for (int i = 0; i < c_shape.size(); ++i) { | |||
| c_shape[i] = a_ptr[i]; | |||
| } | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -172,8 +172,7 @@ TEST_F(TestConv1x1Fp32, Conv1x1WeightTest1) { | |||
| int Conv1x1TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, float **correct) { | |||
| lite::Tensor *in_t = new lite::Tensor(kNumberTypeFloat, {1, 2, 3, 4}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *in_t = new lite::Tensor(kNumberTypeFloat, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| in_t->MallocData(); | |||
| float in[] = {12.216284, 3.3466918, 15.327419, 5.234958, 0.804376, 9.952188, 14.727955, -8.080715, | |||
| 13.71383, 8.055829, 6.5845337, -9.25232, -4.24519, 11.550042, 9.262012, 1.2780352, | |||
| @@ -181,23 +180,21 @@ int Conv1x1TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Ten | |||
| memcpy(in_t->MutableData(), in, sizeof(float) * 24); | |||
| inputs_->push_back(in_t); | |||
| lite::Tensor *weight_t = new lite::Tensor(kNumberTypeFloat, {3, 1, 1, 4}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float weight[] = {-0.7308652, 0.5257509, -0.87825793, -1.123181, -1.2206168, 0.562695, | |||
| 1.5382664, -0.5020635, 0.8591602, -0.26410004, 1.1262615, 0.073132955}; /* nhwc */ | |||
| memcpy(weight_t->MutableData(), weight, sizeof(float) * 12); | |||
| inputs_->push_back(weight_t); | |||
| lite::Tensor *bias_t = new lite::Tensor(kNumberTypeFloat, {3}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *bias_t = new lite::Tensor(kNumberTypeFloat, {3}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| float bias[] = {2, 2, 2}; | |||
| memcpy(bias_t->MutableData(), bias, sizeof(float) * 3); | |||
| inputs_->push_back(bias_t); | |||
| lite::Tensor *out_t = new lite::Tensor(kNumberTypeFloat, {1, 2, 3, 3}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *out_t = new lite::Tensor(kNumberTypeFloat, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -239,32 +236,29 @@ TEST_F(TestConv1x1Fp32, Conv1x1Test1) { | |||
| int Conv1x1TestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, float **correct) { | |||
| size_t buffer_size; | |||
| lite::Tensor *in_t = new lite::Tensor(kNumberTypeFloat, {1, 300, 300, 24}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *in_t = new lite::Tensor(kNumberTypeFloat, {1, 300, 300, 24}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| in_t->MallocData(); | |||
| std::string input_path = "./conv/conv1x1fp32_input1_nhwc.bin"; | |||
| auto in = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &buffer_size)); | |||
| memcpy(in_t->MutableData(), in, buffer_size); | |||
| inputs_->push_back(in_t); | |||
| lite::Tensor *weight_t = new lite::Tensor(kNumberTypeFloat, {40, 1, 1, 24}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, {40, 1, 1, 24}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| std::string weight_path = "./conv/conv1x1fp32_weight1_nhwc.bin"; | |||
| auto weight = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &buffer_size)); | |||
| memcpy(weight_t->MutableData(), weight, buffer_size); | |||
| inputs_->push_back(weight_t); | |||
| lite::Tensor *bias_t = new lite::Tensor(kNumberTypeFloat, {40}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *bias_t = new lite::Tensor(kNumberTypeFloat, {40}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| std::string bias_path = "./conv/conv1x1fp32_bias1_nhwc.bin"; | |||
| auto bias = mindspore::lite::ReadFile(bias_path.c_str(), &buffer_size); | |||
| memcpy(bias_t->MutableData(), bias, buffer_size); | |||
| inputs_->push_back(bias_t); | |||
| lite::Tensor *out_t = new lite::Tensor(kNumberTypeFloat, {1, 300, 300, 40}, schema::Format_NHWC, | |||
| lite::TensorCategory(static_cast<schema::NodeType>(1))); | |||
| lite::Tensor *out_t = new lite::Tensor(kNumberTypeFloat, {1, 300, 300, 40}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -257,12 +257,12 @@ TEST_F(CropTestFp32, CropTest11) { | |||
| std::vector<int> out_shape = {1, 4, 2, 2}; | |||
| std::vector<lite::Tensor *> inputs; | |||
| std::vector<lite::Tensor *> outputs; | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, in_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, in_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), input, sizeof(float) * in_t->ElementsNum()); | |||
| inputs.push_back(in_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, out_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, out_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs.push_back(out_t); | |||
| @@ -324,7 +324,7 @@ int DeConvTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| ConvParameter *conv_param, float **correct) { | |||
| std::vector<int> in_dims_nhwc = {1, 5, 7, 2}; | |||
| lite::Tensor *in_t = | |||
| new lite::Tensor(kNumberTypeFloat, in_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| new lite::Tensor(kNumberTypeFloat, in_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| float in_nchw[] = { | |||
| 0.39451003, 0.15045597, 0.5367726, 0.62690735, 0.113554195, 0.5402554, 0.5522764, 0.044319753, 0.25721782, | |||
| @@ -340,7 +340,7 @@ int DeConvTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| std::vector<int> weight_dims_nhwc = {2, 3, 3, 6}; | |||
| lite::Tensor *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, weight_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| new lite::Tensor(kNumberTypeFloat, weight_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float weight_nchw[] = { | |||
| 0.061163727, -0.06261389, 0.07708351, -0.019354159, -0.3859104, -0.082844816, -0.21268463, -0.15746808, | |||
| @@ -361,7 +361,8 @@ int DeConvTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| weight_t->Channel()); | |||
| inputs_->push_back(weight_t); | |||
| lite::Tensor *bias_t = new lite::Tensor(kNumberTypeFloat, {6}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| lite::Tensor *bias_t = | |||
| new lite::Tensor(kNumberTypeFloat, {6}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| float bias[] = {-0.19064677, -0.0034778118, 0.63741624, -1.0311537, -1.0288948, 0.71384084}; | |||
| memcpy(bias_t->MutableData(), bias, sizeof(float) * 6); | |||
| @@ -369,7 +370,7 @@ int DeConvTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| std::vector<int> output_nhwc_dims = {1, 9, 13, 6}; | |||
| lite::Tensor *out_t = | |||
| new lite::Tensor(kNumberTypeFloat, output_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| new lite::Tensor(kNumberTypeFloat, output_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -497,7 +498,7 @@ TEST_F(TestDeConvolutionFp32, DeConvTest1) { | |||
| int DeConvTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, float **correct) { | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, {1, 4, 2, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, {1, 4, 2, 3}, schema::Format_NHWC, lite::Tensor::Category::VAR); | |||
| in_t->MallocData(); | |||
| float in[] = {7.7566547, 19.250782, 17.923292, 13.584222, 3.3293908, 9.734102, 18.83455, -1.5142503, | |||
| -0.29382008, 18.686155, 0.087307654, 4.2010098, -2.2539594, 4.1795673, 13.142356, -3.5939367, | |||
| @@ -505,7 +506,8 @@ int DeConvTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| memcpy(in_t->MutableData(), in, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto *weight_t = new lite::Tensor(kNumberTypeFloat, {3, 3, 3, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, {3, 3, 3, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float weight[] = {-0.39557076, 0.15087655, 0.35216075, -0.20893791, 0.28683448, 0.08006268, 0.9830812, | |||
| 0.27212173, 0.5171944, -0.0014505, 0.78694165, 0.25425306, 0.16605458, -0.06127124, | |||
| @@ -519,7 +521,7 @@ int DeConvTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| inputs_->push_back(weight_t); | |||
| std::vector<int> out_nhwc_dims = {1, 7, 3, 2}; | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::VAR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -564,7 +566,7 @@ TEST_F(TestDeConvolutionFp32, DeConvTest2) { | |||
| int DeConvTestInit3(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, float **correct) { | |||
| std::vector<int> in_dims_nhwc = {1, 3, 3, 2}; | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, in_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, in_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::VAR); | |||
| in_t->MallocData(); | |||
| float in_nchw[] = {0.10411751, 0.24034509, 0.71456534, 0.75286126, 0.9778457, 0.21043599, | |||
| 0.26498786, 0.6701024, 0.9744634, 0.49075702, 0.03877404, 0.48646277, | |||
| @@ -574,8 +576,8 @@ int DeConvTestInit3(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| inputs_->push_back(in_t); | |||
| std::vector<int> w_dims_nhwc = {2, 2, 2, 2}; | |||
| auto *weight_t = new lite::Tensor(kNumberTypeFloat, w_dims_nhwc, schema::Format_NHWC, | |||
| lite::TensorCategory(schema::NodeType_Parameter)); | |||
| auto *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, w_dims_nhwc, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float w_nchw[] = {-0.108016446, -0.44254777, 0.29249913, 0.18764605, 1.1250675, 0.29441583, | |||
| -0.34362152, 0.7557833, 0.16503833, 0.2418737, -0.26612744, 0.5072577, | |||
| @@ -585,8 +587,7 @@ int DeConvTestInit3(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| inputs_->push_back(weight_t); | |||
| std::vector<int> out_dims_nhwc = {1, 9, 9, 2}; | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_dims_nhwc, schema::Format_NC4HW4, | |||
| lite::TensorCategory(schema::NodeType_Parameter)); | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_dims_nhwc, schema::Format_NC4HW4, lite::Tensor::Category::VAR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -644,7 +645,7 @@ int DeConvTestInit4(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| ConvParameter *conv_param, float **correct) { | |||
| size_t buffer_size; | |||
| std::vector<int> in_nhwc_dims = {1, 300, 300, 30}; | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, in_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *in_t = new lite::Tensor(kNumberTypeFloat, in_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::VAR); | |||
| in_t->MallocData(); | |||
| std::string in_nhwc_path = "./deconv/deconv_fp32_nhwc_input1.bin"; | |||
| auto in_nhwc = reinterpret_cast<float *>(mindspore::lite::ReadFile(in_nhwc_path.c_str(), &buffer_size)); | |||
| @@ -652,7 +653,8 @@ int DeConvTestInit4(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| inputs_->push_back(in_t); | |||
| std::vector<int> w_nhwc_dims = {30, 3, 3, 40}; | |||
| auto *weight_t = new lite::Tensor(kNumberTypeFloat, w_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, w_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| std::string weight_path = "./deconv/deconv_fp32_nchw_weight1.bin"; | |||
| auto weight_nchw = reinterpret_cast<float *>(mindspore::lite::ReadFile(weight_path.c_str(), &buffer_size)); | |||
| @@ -660,7 +662,7 @@ int DeConvTestInit4(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| weight_t->Channel()); | |||
| inputs_->push_back(weight_t); | |||
| auto *bias_t = new lite::Tensor(kNumberTypeFloat, {40}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *bias_t = new lite::Tensor(kNumberTypeFloat, {40}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| std::string bias_path = "./deconv/deconv_fp32_nchw_bias1.bin"; | |||
| auto bias = mindspore::lite::ReadFile(bias_path.c_str(), &buffer_size); | |||
| @@ -668,7 +670,7 @@ int DeConvTestInit4(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tens | |||
| inputs_->push_back(bias_t); | |||
| std::vector<int> out_nhwc_dims = {1, 302, 302, 40}; | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto *out_t = new lite::Tensor(kNumberTypeFloat, out_nhwc_dims, schema::Format_NHWC, lite::Tensor::Category::VAR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -30,13 +30,14 @@ class TestEluFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void EluTestInit(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, EluParameter *elu_param) { | |||
| Tensor *in_t_first = new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t_first = | |||
| new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t_first->MallocData(); | |||
| float in_first[] = {-1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 0}; | |||
| memcpy(in_t_first->MutableData(), in_first, sizeof(float) * in_t_first->ElementsNum()); | |||
| inputs_->push_back(in_t_first); | |||
| Tensor *outputs_t = new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *outputs_t = new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| outputs_t->MallocData(); | |||
| outputs_->push_back(outputs_t); | |||
| @@ -31,25 +31,28 @@ class TestEmbeddingLookupFp32 : public mindspore::CommonTest { | |||
| void ElTestInit(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, | |||
| EmbeddingLookupParameter *embedding_lookup_param) { | |||
| Tensor *in_t_first = new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t_first = | |||
| new Tensor(kNumberTypeFloat32, {6, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t_first->MallocData(); | |||
| float in_first[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||
| memcpy(in_t_first->MutableData(), in_first, sizeof(float) * in_t_first->ElementsNum()); | |||
| inputs_->push_back(in_t_first); | |||
| Tensor *in_t_second = new Tensor(kNumberTypeFloat32, {4, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t_second = | |||
| new Tensor(kNumberTypeFloat32, {4, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t_second->MallocData(); | |||
| float in_second[] = {1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8}; | |||
| memcpy(in_t_second->MutableData(), in_second, sizeof(float) * in_t_second->ElementsNum()); | |||
| inputs_->push_back(in_t_second); | |||
| Tensor *ids_t = new Tensor(kNumberTypeFloat32, {2, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *ids_t = new Tensor(kNumberTypeFloat32, {2, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| ids_t->MallocData(); | |||
| int ids[] = {1, 9, 2, 4, 6, 7}; | |||
| memcpy(ids_t->MutableData(), ids, sizeof(int) * ids_t->ElementsNum()); | |||
| inputs_->push_back(ids_t); | |||
| Tensor *outputs_t = new Tensor(kNumberTypeInt32, {2, 3, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *outputs_t = | |||
| new Tensor(kNumberTypeInt32, {2, 3, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| outputs_t->MallocData(); | |||
| outputs_->push_back(outputs_t); | |||
| @@ -33,14 +33,14 @@ class TestFcFp32 : public mindspore::CommonTest { | |||
| int FcTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| MatMulParameter *matmal_param, float **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeFloat, {2, 2, 2, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = new Tensor(kNumberTypeFloat, {2, 2, 2, 2}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| float in[] = {-3.2366564, -4.7733846, -7.8329225, 16.146885, 5.060793, -6.1471, -1.7680453, -6.5721383, | |||
| 17.87506, -5.1192183, 10.742863, 1.4536934, 19.693445, 19.45783, 5.063163, 0.5234792}; | |||
| memcpy(in_t->MutableData(), in, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {3, 8}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {3, 8}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float weight[] = {-0.0024438887, 0.0006738146, -0.008169129, 0.0021510671, -0.012470592, -0.0053063435, | |||
| 0.006050155, 0.008656233, 0.012911413, -0.0028635843, -0.00034080597, -0.0010622552, | |||
| @@ -49,13 +49,13 @@ int FcTestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor * | |||
| memcpy(weight_t->MutableData(), weight, sizeof(float) * weight_t->ElementsNum()); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *bias_t = new Tensor(kNumberTypeFloat, {3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *bias_t = new Tensor(kNumberTypeFloat, {3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| float bias[] = {1.6103756, -0.9872417, 0.546849}; | |||
| memcpy(bias_t->MutableData(), bias, sizeof(float) * bias_t->ElementsNum()); | |||
| inputs_->push_back(bias_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {2, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {2, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -91,28 +91,29 @@ int FcTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor * | |||
| MatMulParameter *matmal_param, float **correct) { | |||
| size_t buffer_size; | |||
| Tensor *in_t = new Tensor(kNumberTypeFloat, {20, 4, 2, 10}, schema::Format_NCHW, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = | |||
| new Tensor(kNumberTypeFloat, {20, 4, 2, 10}, schema::Format_NCHW, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| std::string in_path = "./matmul/FcFp32_input1.bin"; | |||
| auto in_data = mindspore::lite::ReadFile(in_path.c_str(), &buffer_size); | |||
| memcpy(in_t->MutableData(), in_data, buffer_size); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {30, 80}, schema::Format_NCHW, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {30, 80}, schema::Format_NCHW, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| std::string weight_path = "./matmul/FcFp32_weight1.bin"; | |||
| auto w_data = mindspore::lite::ReadFile(weight_path.c_str(), &buffer_size); | |||
| memcpy(weight_t->MutableData(), w_data, buffer_size); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *bias_t = new Tensor(kNumberTypeFloat, {30}, schema::Format_NCHW, lite::Tensor::Category::CONST); | |||
| Tensor *bias_t = new Tensor(kNumberTypeFloat, {30}, schema::Format_NCHW, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| std::string bias_path = "./matmul/FcFp32_bias1.bin"; | |||
| auto bias_data = mindspore::lite::ReadFile(bias_path.c_str(), &buffer_size); | |||
| memcpy(bias_t->MutableData(), bias_data, buffer_size); | |||
| inputs_->push_back(bias_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {20, 30}, schema::Format_NCHW, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {20, 30}, schema::Format_NCHW, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -147,13 +148,13 @@ TEST_F(TestFcFp32, FcTest2) { | |||
| int FcTestInit3(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| MatMulParameter *matmal_param, float **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeFloat, {1, 1, 1, 20}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = new Tensor(kNumberTypeFloat, {1, 1, 1, 20}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| float in[] = {1, 0, 3, 0, 4, 5, 2, 5, 2, 5, 1, 5, 0, 1, 2, 0, 2, 1, 0, 5}; | |||
| memcpy(in_t->MutableData(), in, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {16, 20}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = new Tensor(kNumberTypeFloat, {16, 20}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| float weight[] = {0, 5, 5, 3, 0, 5, 3, 1, 0, 1, 3, 0, 5, 5, 2, 4, 0, 1, 1, 2, 3, 0, 5, 5, 4, 4, 1, 4, 1, 1, 5, 3, | |||
| 3, 1, 0, 3, 1, 2, 4, 5, 3, 4, 4, 0, 3, 5, 0, 3, 4, 1, 0, 1, 3, 4, 0, 5, 2, 5, 0, 4, 2, 2, 2, 2, | |||
| @@ -168,7 +169,7 @@ int FcTestInit3(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor * | |||
| memcpy(weight_t->MutableData(), weight, sizeof(float) * weight_t->ElementsNum()); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {1, 16}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeFloat, {1, 16}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -39,9 +39,9 @@ TEST_F(TestInstanceNormFp32, INTest1) { | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {3}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {3}); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(12); | |||
| @@ -49,7 +49,7 @@ TEST_F(TestInstanceNormFp32, INTest1) { | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {1, 2, 2, 3}); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| @@ -71,10 +71,10 @@ TEST_F(TestInstanceNormFp32, INTest1) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestInstanceNormFp32, INTest2) { | |||
| @@ -92,9 +92,9 @@ TEST_F(TestInstanceNormFp32, INTest2) { | |||
| lite::Tensor input0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| lite::Tensor input1_tensor(kNumberTypeFloat32, {6}); | |||
| lite::Tensor input2_tensor(kNumberTypeFloat32, {6}); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| std::vector<lite::Tensor *> inputs_tensor = {&input0_tensor, &input1_tensor, &input2_tensor}; | |||
| std::vector<float> output(24); | |||
| @@ -104,7 +104,7 @@ TEST_F(TestInstanceNormFp32, INTest2) { | |||
| -3.5422924, -14.005781, -2.3525476, -6.7113695, -16.396551, -1.4275324}; | |||
| lite::Tensor output0_tensor(kNumberTypeFloat32, {2, 2, 2, 3}); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| std::vector<lite::Tensor *> outputs_tensor = {&output0_tensor}; | |||
| kernel::KernelKey desc = {kernel::KERNEL_ARCH::kCPU, kNumberTypeFloat32, schema::PrimitiveType_InstanceNorm}; | |||
| @@ -126,9 +126,9 @@ TEST_F(TestInstanceNormFp32, INTest2) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -42,8 +42,8 @@ class TestL2NormFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestL2NormFp32::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestL2NormFp32::Init(const std::vector<int> &input_shape, const std::vector<int> &output_shape, float *input_data, | |||
| @@ -53,8 +53,8 @@ void TestL2NormFp32::Init(const std::vector<int> &input_shape, const std::vector | |||
| in_tensor_.set_shape(input_shape); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data(output_data); | |||
| param_.axis_num_ = axis_num; | |||
| if (axis_num == 1) { | |||
| @@ -45,10 +45,10 @@ TEST_F(TestLshProjectionFp32, Dense1DInputs) { | |||
| int32_t input_data1[] = {12345, 54321, 67890, 9876, -12345678}; | |||
| float input_data2[] = {1.0, 1.0, 1.0, 1.0, 1.0}; | |||
| int32_t output_data[6] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| in_tensor2.SetData(input_data2); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| in_tensor2.set_data(input_data2); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1, &in_tensor2}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -73,9 +73,9 @@ TEST_F(TestLshProjectionFp32, Dense1DInputs) { | |||
| PrintData("output data", output_data, 6); | |||
| CompareOutputData(output_data, except_result.data(), 6, 0.000001); | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestLshProjectionFp32, Sparse1DInputs) { | |||
| @@ -86,9 +86,9 @@ TEST_F(TestLshProjectionFp32, Sparse1DInputs) { | |||
| float input_data0[] = {0.123, 0.456, -0.321, 1.234, 5.678, -4.321}; | |||
| int32_t input_data1[] = {12345, 54321, 67890, 9876, -12345678}; | |||
| int32_t output_data[3] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -113,9 +113,9 @@ TEST_F(TestLshProjectionFp32, Sparse1DInputs) { | |||
| PrintData("output data", output_data, 3); | |||
| CompareOutputData(output_data, except_result.data(), 3, 0.000001); | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestLshProjectionFp32, Sparse3DInputs) { | |||
| @@ -129,10 +129,10 @@ TEST_F(TestLshProjectionFp32, Sparse3DInputs) { | |||
| 9123, 7890, -987, -876, -765, -987, -543, -432, -321, -543}; | |||
| float input_data2[] = {0.12, 0.34, 0.56, 0.67, 0.78}; | |||
| int32_t output_data[3] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| in_tensor2.SetData(input_data2); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| in_tensor2.set_data(input_data2); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1, &in_tensor2}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -157,8 +157,8 @@ TEST_F(TestLshProjectionFp32, Sparse3DInputs) { | |||
| PrintData("output data", output_data, 3); | |||
| CompareOutputData(output_data, except_result.data(), 3, 0.000001); | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -70,17 +70,18 @@ TEST_F(TestMatMulFp32, Row2Col8Test2) { | |||
| int MMTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, float *b_ptr, | |||
| std::vector<int> a_shape, std::vector<int> b_shape, std::vector<int> c_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto weight_t = new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| memcpy(weight_t->MutableData(), b_ptr, sizeof(float) * weight_t->ElementsNum()); | |||
| inputs_->push_back(weight_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -90,22 +91,24 @@ int MMTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> | |||
| int MMTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, float *b_ptr, | |||
| float *bias_ptr, std::vector<int> a_shape, std::vector<int> b_shape, std::vector<int> bias_shape, | |||
| std::vector<int> c_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto weight_t = new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| memcpy(weight_t->MutableData(), b_ptr, sizeof(float) * weight_t->ElementsNum()); | |||
| inputs_->push_back(weight_t); | |||
| auto bias_t = new lite::Tensor(kNumberTypeFloat, bias_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto bias_t = | |||
| new lite::Tensor(kNumberTypeFloat, bias_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| bias_t->MallocData(); | |||
| memcpy(bias_t->MutableData(), bias_ptr, sizeof(float) * bias_t->ElementsNum()); | |||
| inputs_->push_back(bias_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -51,11 +51,11 @@ class TestNMSFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestNMSFp32::TearDown() { | |||
| box_tensor_.SetData(nullptr); | |||
| score_tensor_.SetData(nullptr); | |||
| max_output_box_per_class_tensor_.SetData(nullptr); | |||
| iou_threshold_tensor_.SetData(nullptr); | |||
| score_threshold_tensor_.SetData(nullptr); | |||
| box_tensor_.set_data(nullptr); | |||
| score_tensor_.set_data(nullptr); | |||
| max_output_box_per_class_tensor_.set_data(nullptr); | |||
| iou_threshold_tensor_.set_data(nullptr); | |||
| score_threshold_tensor_.set_data(nullptr); | |||
| out_tensor_.FreeData(); | |||
| } | |||
| @@ -65,19 +65,19 @@ void TestNMSFp32::Init(const std::vector<int> &box_tensor_shape, float *box_data | |||
| box_tensor_.set_data_type(kNumberTypeFloat32); | |||
| box_tensor_.SetFormat(Format_NHWC); | |||
| box_tensor_.set_shape(box_tensor_shape); | |||
| box_tensor_.SetData(box_data); | |||
| box_tensor_.set_data(box_data); | |||
| score_tensor_.set_data_type(kNumberTypeFloat32); | |||
| score_tensor_.SetFormat(Format_NHWC); | |||
| score_tensor_.set_shape(score_tensor_shape); | |||
| score_tensor_.SetData(score_data); | |||
| score_tensor_.set_data(score_data); | |||
| max_output_ = max_output; | |||
| max_output_box_per_class_tensor_.SetData(&max_output_); | |||
| max_output_box_per_class_tensor_.set_data(&max_output_); | |||
| iou_threshold_ = iou_threshold; | |||
| iou_threshold_tensor_.SetData(&iou_threshold_); | |||
| iou_threshold_tensor_.set_data(&iou_threshold_); | |||
| score_threshold_ = score_threshold; | |||
| score_threshold_tensor_.SetData(&score_threshold_); | |||
| score_threshold_tensor_.set_data(&score_threshold_); | |||
| out_tensor_.set_data_type(kNumberTypeInt32); | |||
| @@ -52,9 +52,9 @@ class TestPadFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestPadFp32::TearDown() { | |||
| paddings_tensor_.SetData(nullptr); | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| paddings_tensor_.set_data(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestPadFp32::Prepare(const std::vector<int> &input_shape, const std::vector<int> &output_shape, float *input_data, | |||
| @@ -65,8 +65,8 @@ void TestPadFp32::Prepare(const std::vector<int> &input_shape, const std::vector | |||
| in_tensor_.set_shape(input_shape); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data(output_data); | |||
| param_.pad_mode_ = static_cast<int>(mode); | |||
| if (mode == PaddingMode_CONSTANT) { | |||
| @@ -78,7 +78,7 @@ void TestPadFp32::Prepare(const std::vector<int> &input_shape, const std::vector | |||
| } else { | |||
| paddings_tensor_.set_data_type(kNumberTypeInt32); | |||
| paddings_tensor_.set_shape({4, 2}); | |||
| paddings_tensor_.SetData(paddings); | |||
| paddings_tensor_.set_data(paddings); | |||
| inputs_.emplace_back(&paddings_tensor_); | |||
| } | |||
| @@ -27,17 +27,18 @@ class TestPowerFp32 : public mindspore::CommonTest { | |||
| int PowerTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, | |||
| float *b_ptr, std::vector<int> a_shape, std::vector<int> b_shape, std::vector<int> c_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto weight_t = new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto weight_t = | |||
| new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| memcpy(weight_t->MutableData(), b_ptr, sizeof(float) * weight_t->ElementsNum()); | |||
| inputs_->push_back(weight_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -46,12 +47,12 @@ int PowerTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor | |||
| int PowerTestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, | |||
| std::vector<int> a_shape, std::vector<int> c_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -61,8 +61,8 @@ class TestReduceFp32 : public mindspore::CommonTest { | |||
| void TestReduceFp32::TearDown() { | |||
| delete ctx_; | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestReduceFp32::Prepare(const std::vector<int> &in_shape, const std::vector<int> &out_shape, float *input_data, | |||
| @@ -70,11 +70,11 @@ void TestReduceFp32::Prepare(const std::vector<int> &in_shape, const std::vector | |||
| bool reduce_to_end, float coeff) { | |||
| in_tensor_.set_data_type(kNumberTypeFloat32); | |||
| in_tensor_.set_shape(in_shape); | |||
| in_tensor_.SetData(input_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(out_shape); | |||
| out_tensor_.SetData(output_data); | |||
| out_tensor_.set_data(output_data); | |||
| param_.mode_ = static_cast<int>(mode); | |||
| param_.num_axes_ = num_axes; | |||
| @@ -46,8 +46,8 @@ class TestResizeBilinearFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestResizeBilinearFp32::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestResizeBilinearFp32::Prepare(const std::vector<int> &input_shape, const std::vector<int> &output_shape, | |||
| @@ -58,8 +58,8 @@ void TestResizeBilinearFp32::Prepare(const std::vector<int> &input_shape, const | |||
| in_tensor_.set_shape(input_shape); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data(output_data); | |||
| ResizeParameter param_ = { | |||
| {}, static_cast<int>(schema::ResizeMethod_LINEAR), output_shape[1], output_shape[2], align_corners}; | |||
| @@ -42,8 +42,8 @@ class TestResizeNearestNeighborFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestResizeNearestNeighborFp32::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestResizeNearestNeighborFp32::Prepare(const std::vector<int> &input_shape, const std::vector<int> &output_shape, | |||
| @@ -53,8 +53,8 @@ void TestResizeNearestNeighborFp32::Prepare(const std::vector<int> &input_shape, | |||
| in_tensor_.set_shape(input_shape); | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| out_tensor_.set_data(output_data); | |||
| ResizeParameter param_ = { | |||
| {}, static_cast<int>(schema::ResizeMethod_NEAREST), output_shape[1], output_shape[2], align_corners}; | |||
| @@ -35,9 +35,9 @@ TEST_F(TestReverseSequenceFp32, BatchLessSeq) { | |||
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}; | |||
| int input_data1[] = {2, 3, 4}; | |||
| float output_data[2 * 3 * 4 * 2] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -65,9 +65,9 @@ TEST_F(TestReverseSequenceFp32, BatchLessSeq) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestReverseSequenceFp32, BatchGreaterSeq) { | |||
| @@ -79,9 +79,9 @@ TEST_F(TestReverseSequenceFp32, BatchGreaterSeq) { | |||
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}; | |||
| int input_data1[] = {2, 3, 3, 2}; | |||
| float output_data[2 * 3 * 4 * 2] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -109,9 +109,9 @@ TEST_F(TestReverseSequenceFp32, BatchGreaterSeq) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestReverseSequenceFp32, BatchSeqNotAdjacent) { | |||
| @@ -123,9 +123,9 @@ TEST_F(TestReverseSequenceFp32, BatchSeqNotAdjacent) { | |||
| 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47}; | |||
| int input_data1[] = {2, 4}; | |||
| float output_data[2 * 3 * 4 * 2] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -153,8 +153,8 @@ TEST_F(TestReverseSequenceFp32, BatchSeqNotAdjacent) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -27,17 +27,17 @@ class TestROIPoolingFp32 : public mindspore::CommonTest { | |||
| int ROIPoolingTestInit(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, float *a_ptr, | |||
| float *b_ptr, std::vector<int> a_shape, std::vector<int> b_shape, std::vector<int> c_shape) { | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto in_t = new lite::Tensor(kNumberTypeFloat, a_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| memcpy(in_t->MutableData(), a_ptr, sizeof(float) * in_t->ElementsNum()); | |||
| inputs_->push_back(in_t); | |||
| auto roi_t = new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto roi_t = new lite::Tensor(kNumberTypeFloat, b_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| roi_t->MallocData(); | |||
| memcpy(roi_t->MutableData(), b_ptr, sizeof(float) * roi_t->ElementsNum()); | |||
| inputs_->push_back(roi_t); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto out_t = new lite::Tensor(kNumberTypeFloat, c_shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| outputs_->push_back(out_t); | |||
| @@ -55,10 +55,10 @@ class TestScaleFp32 : public mindspore::CommonTest { | |||
| }; | |||
| void TestScaleFp32::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| scale_tensor_.SetData(nullptr); | |||
| offset_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| scale_tensor_.set_data(nullptr); | |||
| offset_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestScaleFp32::Prepare(const std::vector<int> &input_shape, const std::vector<int> &scale_shape, | |||
| @@ -77,10 +77,10 @@ void TestScaleFp32::Prepare(const std::vector<int> &input_shape, const std::vect | |||
| out_tensor_.set_data_type(kNumberTypeFloat32); | |||
| out_tensor_.set_shape(output_shape); | |||
| in_tensor_.SetData(input_data); | |||
| scale_tensor_.SetData(scale_data); | |||
| offset_tensor_.SetData(offset_data); | |||
| out_tensor_.SetData(output_data); | |||
| in_tensor_.set_data(input_data); | |||
| scale_tensor_.set_data(scale_data); | |||
| offset_tensor_.set_data(offset_data); | |||
| out_tensor_.set_data(output_data); | |||
| param_.activation_type_ = act_type; | |||
| param_.axis_ = axis; | |||
| @@ -33,14 +33,14 @@ class TestSkipGramFp32 : public mindspore::CommonTest { | |||
| void SkipGramTestInit(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, | |||
| SkipGramParameter *skip_gram_param) { | |||
| Tensor *in_t_first = new Tensor(kObjectTypeString, {}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t_first = new Tensor(kObjectTypeString, {}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| char sentence[] = "The quick brown fox jumps over the lazy dog"; | |||
| std::vector<StringPack> str; | |||
| str.push_back({43, sentence}); | |||
| mindspore::lite::WriteStringsToTensor(in_t_first, str); | |||
| inputs_->push_back(in_t_first); | |||
| Tensor *output = new Tensor(kObjectTypeString, {}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *output = new Tensor(kObjectTypeString, {}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| outputs_->push_back(output); | |||
| skip_gram_param->ngram_size = 3; | |||
| @@ -51,7 +51,7 @@ TEST_F(SpaceToDepthTestFp32, SpaceToDepthTest2) { | |||
| std::vector<float> input = {1, 2, 5, 6, 10, 20, 3, 8, 18, 10, 3, 4, 11, 55, 15, 25}; | |||
| std::vector<int> in_shape = {1, 4, 4, 1}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input.data()); | |||
| input_tensor.set_data(input.data()); | |||
| input_tensor.set_shape(in_shape); | |||
| input_tensor.SetFormat(schema::Format_NHWC); | |||
| input_tensor.set_data_type(kNumberTypeFloat32); | |||
| @@ -63,7 +63,7 @@ TEST_F(SpaceToDepthTestFp32, SpaceToDepthTest2) { | |||
| std::vector<float> output(16); | |||
| std::vector<int> out_shape = {1, 2, 2, 4}; | |||
| lite::Tensor output_tensor; | |||
| output_tensor.SetData(output.data()); | |||
| output_tensor.set_data(output.data()); | |||
| output_tensor.set_shape(out_shape); | |||
| output_tensor.SetFormat(schema::Format_NHWC); | |||
| output_tensor.set_data_type(kNumberTypeFloat32); | |||
| @@ -42,22 +42,22 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test1) { | |||
| TypeId tid = kNumberTypeFloat32; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->set_data_type(tid); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->set_data_type(tid); | |||
| lite::Tensor *input_tensor3 = new lite::Tensor; | |||
| input_tensor3->SetData(input3.data()); | |||
| input_tensor3->set_data(input3.data()); | |||
| input_tensor3->set_shape(shape3); | |||
| input_tensor3->set_data_type(tid); | |||
| lite::Tensor *input_tensor4 = new lite::Tensor; | |||
| input_tensor4->SetData(input4.data()); | |||
| input_tensor4->set_data(input4.data()); | |||
| input_tensor4->set_shape(shape4); | |||
| input_tensor4->set_data_type(tid); | |||
| @@ -72,7 +72,7 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test1) { | |||
| std::vector<int> output_shape = {6, 10}; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->set_data_type(tid); | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| @@ -101,11 +101,11 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test1) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| input_tensor3->SetData(nullptr); | |||
| input_tensor4->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| input_tensor3->set_data(nullptr); | |||
| input_tensor4->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete input_tensor3; | |||
| @@ -126,22 +126,22 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test2) { | |||
| TypeId tid = kNumberTypeFloat32; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->set_data_type(tid); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->set_data_type(tid); | |||
| lite::Tensor *input_tensor3 = new lite::Tensor; | |||
| input_tensor3->SetData(input3.data()); | |||
| input_tensor3->set_data(input3.data()); | |||
| input_tensor3->set_shape(shape3); | |||
| input_tensor3->set_data_type(tid); | |||
| lite::Tensor *input_tensor4 = new lite::Tensor; | |||
| input_tensor4->SetData(input4.data()); | |||
| input_tensor4->set_data(input4.data()); | |||
| input_tensor4->set_shape(shape4); | |||
| input_tensor4->set_data_type(tid); | |||
| @@ -156,7 +156,7 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test2) { | |||
| std::vector<int> output_shape = {6, 10}; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->set_data_type(tid); | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| @@ -185,11 +185,11 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| input_tensor3->SetData(nullptr); | |||
| input_tensor4->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| input_tensor3->set_data(nullptr); | |||
| input_tensor4->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete input_tensor3; | |||
| @@ -210,22 +210,22 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test3) { | |||
| TypeId tid = kNumberTypeFloat32; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->set_data_type(tid); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->set_data_type(tid); | |||
| lite::Tensor *input_tensor3 = new lite::Tensor; | |||
| input_tensor3->SetData(input3.data()); | |||
| input_tensor3->set_data(input3.data()); | |||
| input_tensor3->set_shape(shape3); | |||
| input_tensor3->set_data_type(tid); | |||
| lite::Tensor *input_tensor4 = new lite::Tensor; | |||
| input_tensor4->SetData(input4.data()); | |||
| input_tensor4->set_data(input4.data()); | |||
| input_tensor4->set_shape(shape4); | |||
| input_tensor4->set_data_type(tid); | |||
| @@ -240,7 +240,7 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test3) { | |||
| std::vector<int> output_shape = {1, 10}; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->set_data_type(tid); | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| @@ -267,11 +267,11 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test3) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| input_tensor3->SetData(nullptr); | |||
| input_tensor4->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| input_tensor3->set_data(nullptr); | |||
| input_tensor4->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete input_tensor3; | |||
| @@ -292,22 +292,22 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test4) { | |||
| TypeId tid = kNumberTypeFloat32; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->set_data_type(tid); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->set_data_type(tid); | |||
| lite::Tensor *input_tensor3 = new lite::Tensor; | |||
| input_tensor3->SetData(input3.data()); | |||
| input_tensor3->set_data(input3.data()); | |||
| input_tensor3->set_shape(shape3); | |||
| input_tensor3->set_data_type(tid); | |||
| lite::Tensor *input_tensor4 = new lite::Tensor; | |||
| input_tensor4->SetData(input4.data()); | |||
| input_tensor4->set_data(input4.data()); | |||
| input_tensor4->set_shape(shape4); | |||
| input_tensor4->set_data_type(tid); | |||
| @@ -322,7 +322,7 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test4) { | |||
| std::vector<int> output_shape = {1, 10}; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->set_data_type(tid); | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| @@ -349,11 +349,11 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test4) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| input_tensor3->SetData(nullptr); | |||
| input_tensor4->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| input_tensor3->set_data(nullptr); | |||
| input_tensor4->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete input_tensor3; | |||
| @@ -374,22 +374,22 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test5) { | |||
| TypeId tid = kNumberTypeFloat32; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->set_data_type(tid); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->set_data_type(tid); | |||
| lite::Tensor *input_tensor3 = new lite::Tensor; | |||
| input_tensor3->SetData(input3.data()); | |||
| input_tensor3->set_data(input3.data()); | |||
| input_tensor3->set_shape(shape3); | |||
| input_tensor3->set_data_type(tid); | |||
| lite::Tensor *input_tensor4 = new lite::Tensor; | |||
| input_tensor4->SetData(input4.data()); | |||
| input_tensor4->set_data(input4.data()); | |||
| input_tensor4->set_shape(shape4); | |||
| input_tensor4->set_data_type(tid); | |||
| @@ -404,7 +404,7 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test5) { | |||
| std::vector<int> output_shape = {6, 10}; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->set_data_type(tid); | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| @@ -433,11 +433,11 @@ TEST_F(TestSparseToDenseFp32, SparseToDense_test5) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| input_tensor3->SetData(nullptr); | |||
| input_tensor4->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| input_tensor3->set_data(nullptr); | |||
| input_tensor4->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete input_tensor3; | |||
| @@ -137,7 +137,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice3) { | |||
| std::vector<int> output_shape = {1, 1, 2}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -145,7 +145,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice3) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -163,8 +163,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice3) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 2, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSliceFp32, StridedSlice4) { | |||
| @@ -187,7 +187,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice4) { | |||
| std::vector<int> output_shape = {2, 2}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -195,7 +195,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice4) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -213,8 +213,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice4) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 4, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSliceFp32, StridedSlice5) { | |||
| @@ -244,7 +244,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice5) { | |||
| std::vector<int> output_shape = {3, 2, 2}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -252,7 +252,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice5) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -270,8 +270,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice5) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 12, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSliceFp32, StridedSlice6) { | |||
| @@ -301,7 +301,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice6) { | |||
| std::vector<int> output_shape = {2, 2, 2}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -309,7 +309,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice6) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -327,8 +327,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice6) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 8, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSliceFp32, StridedSlice7) { | |||
| @@ -350,7 +350,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice7) { | |||
| std::vector<int> output_shape = {1, 1}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -358,7 +358,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice7) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -376,8 +376,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice7) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 1, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestStridedSliceFp32, StridedSlice8) { | |||
| @@ -407,7 +407,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice8) { | |||
| std::vector<int> output_shape = {1, 1, 5}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(input_shape); | |||
| std::vector<lite::Tensor *> inputs_tensor(1); | |||
| inputs_tensor[0] = &input_tensor; | |||
| @@ -415,7 +415,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice8) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -433,8 +433,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice8) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 5, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| // 5d input, multi inputs | |||
| @@ -549,16 +549,16 @@ TEST_F(TestStridedSliceFp32, StridedSlice9) { | |||
| std::vector<int> output_shape = {1, 1, 10, 7, 7}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input_data); | |||
| input_tensor.set_data(input_data); | |||
| input_tensor.set_shape(in_shape); | |||
| lite::Tensor begins_tensor; | |||
| begins_tensor.SetData(begins.data()); | |||
| begins_tensor.set_data(begins.data()); | |||
| begins_tensor.set_shape({1}); | |||
| lite::Tensor ends_tensor; | |||
| ends_tensor.SetData(ends.data()); | |||
| ends_tensor.set_data(ends.data()); | |||
| ends_tensor.set_shape({1}); | |||
| lite::Tensor strides_tensor; | |||
| strides_tensor.SetData(strides.data()); | |||
| strides_tensor.set_data(strides.data()); | |||
| strides_tensor.set_shape({1}); | |||
| std::vector<lite::Tensor *> inputs_tensor{&input_tensor, &begins_tensor, &ends_tensor, &strides_tensor}; | |||
| @@ -566,7 +566,7 @@ TEST_F(TestStridedSliceFp32, StridedSlice9) { | |||
| std::vector<lite::Tensor *> outputs_tensor; | |||
| lite::Tensor output_tensor; | |||
| outputs_tensor.push_back(&output_tensor); | |||
| output_tensor.SetData(output_data); | |||
| output_tensor.set_data(output_data); | |||
| output_tensor.set_data_type(input_tensor.data_type()); | |||
| output_tensor.set_shape(output_shape); | |||
| @@ -583,8 +583,8 @@ TEST_F(TestStridedSliceFp32, StridedSlice9) { | |||
| delete ctx; | |||
| CompareOutputData(output_data, correct, 490, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -31,8 +31,8 @@ TEST_F(TestTileFp32, Tile) { | |||
| lite::Tensor out_tensor(kNumberTypeFloat32, {4, 6}); | |||
| float input_data[] = {1, 2, 3, 4}; | |||
| float output_data[24] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -65,7 +65,7 @@ TEST_F(TestTileFp32, Tile) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -33,9 +33,9 @@ TEST_F(TestTopKFp32, TopK) { | |||
| float input_data[] = {1, 2, 3, 6, 5, 4, 9, 8, 7, 10, 12, 11}; | |||
| float output_data0[8] = {0}; | |||
| int32_t output_data1[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor0.SetData(output_data0); | |||
| out_tensor1.SetData(output_data1); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor0.set_data(output_data0); | |||
| out_tensor1.set_data(output_data1); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor0, &out_tensor1}; | |||
| @@ -60,8 +60,8 @@ TEST_F(TestTopKFp32, TopK) { | |||
| EXPECT_EQ(output_data1[i], expect1[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor0.SetData(nullptr); | |||
| out_tensor1.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor0.set_data(nullptr); | |||
| out_tensor1.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -183,7 +183,7 @@ TEST_F(TestTransposeFp32, TransposeFp32_test5) { | |||
| } | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input.data()); | |||
| input_tensor.set_data(input.data()); | |||
| input_tensor.set_shape(input_shape); | |||
| input_tensor.SetFormat(schema::Format_NHWC); | |||
| input_tensor.set_data_type(kNumberTypeFloat32); | |||
| @@ -191,7 +191,7 @@ TEST_F(TestTransposeFp32, TransposeFp32_test5) { | |||
| inputs_tensor.emplace_back(&input_tensor); | |||
| lite::Tensor output_tensor; | |||
| output_tensor.SetData(output.data()); | |||
| output_tensor.set_data(output.data()); | |||
| output_tensor.set_shape(output_shape); | |||
| output_tensor.SetFormat(schema::Format_NHWC); | |||
| output_tensor.set_data_type(kNumberTypeFloat32); | |||
| @@ -214,8 +214,8 @@ TEST_F(TestTransposeFp32, TransposeFp32_test5) { | |||
| } | |||
| std::cout << "\n"; | |||
| CompareOutputData(output.data(), correct, 24, 0.000001); | |||
| input_tensor.SetData(nullptr); | |||
| output_tensor.SetData(nullptr); | |||
| input_tensor.set_data(nullptr); | |||
| output_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -33,9 +33,9 @@ TEST_F(TestUniqueFp32, Unique) { | |||
| float input_data[] = {1, 1, 2, 4, 4, 4, 7, 8, 8}; | |||
| float output_data0[9] = {0}; | |||
| int output_data1[9] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor0.SetData(output_data0); | |||
| out_tensor1.SetData(output_data1); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor0.set_data(output_data0); | |||
| out_tensor1.set_data(output_data1); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor0, &out_tensor1}; | |||
| @@ -64,8 +64,8 @@ TEST_F(TestUniqueFp32, Unique) { | |||
| EXPECT_EQ(output_data1[i], expect1[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor0.SetData(nullptr); | |||
| out_tensor1.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor0.set_data(nullptr); | |||
| out_tensor1.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -37,11 +37,11 @@ TEST_F(TestUnstackFp32, Unstack) { | |||
| float output_data1[6] = {0}; | |||
| float output_data2[6] = {0}; | |||
| float output_data3[6] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor0.SetData(output_data0); | |||
| out_tensor1.SetData(output_data1); | |||
| out_tensor2.SetData(output_data2); | |||
| out_tensor3.SetData(output_data3); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor0.set_data(output_data0); | |||
| out_tensor1.set_data(output_data1); | |||
| out_tensor2.set_data(output_data2); | |||
| out_tensor3.set_data(output_data3); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor0, &out_tensor1, &out_tensor2, &out_tensor3}; | |||
| @@ -70,11 +70,11 @@ TEST_F(TestUnstackFp32, Unstack) { | |||
| EXPECT_EQ(output_data3[i], expect3[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor0.SetData(nullptr); | |||
| out_tensor1.SetData(nullptr); | |||
| out_tensor2.SetData(nullptr); | |||
| out_tensor3.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor0.set_data(nullptr); | |||
| out_tensor1.set_data(nullptr); | |||
| out_tensor2.set_data(nullptr); | |||
| out_tensor3.set_data(nullptr); | |||
| } | |||
| TEST_F(TestUnstackFp32, Unstack2) { | |||
| @@ -86,10 +86,10 @@ TEST_F(TestUnstackFp32, Unstack2) { | |||
| float output_data0[8] = {0}; | |||
| float output_data1[8] = {0}; | |||
| float output_data2[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor0.SetData(output_data0); | |||
| out_tensor1.SetData(output_data1); | |||
| out_tensor2.SetData(output_data2); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor0.set_data(output_data0); | |||
| out_tensor1.set_data(output_data1); | |||
| out_tensor2.set_data(output_data2); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor0, &out_tensor1, &out_tensor2}; | |||
| @@ -116,9 +116,9 @@ TEST_F(TestUnstackFp32, Unstack2) { | |||
| EXPECT_EQ(output_data2[i], expect2[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor0.SetData(nullptr); | |||
| out_tensor1.SetData(nullptr); | |||
| out_tensor2.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor0.set_data(nullptr); | |||
| out_tensor1.set_data(nullptr); | |||
| out_tensor2.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -82,23 +82,23 @@ std::vector<lite::Tensor *> GenerateTensorsForTest(const char *test, int test_id | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(test, &input_size)); | |||
| lite::Tensor *dy_tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, large_dim); | |||
| dy_tensor->SetData(dy_data); | |||
| dy_tensor->set_data(dy_data); | |||
| auto x1_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dx1_file, &input_size)); | |||
| lite::Tensor *x1_tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, large_dim); | |||
| x1_tensor->SetData(x1_data); | |||
| x1_tensor->set_data(x1_data); | |||
| auto x2_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dx2_file, &input_size)); | |||
| lite::Tensor *x2_tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, small_dim); | |||
| x2_tensor->SetData(x2_data); | |||
| x2_tensor->set_data(x2_data); | |||
| auto dx1_data = new float[large_size]; | |||
| lite::Tensor *dx1_tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, large_dim); | |||
| dx1_tensor->SetData(dx1_data); | |||
| dx1_tensor->set_data(dx1_data); | |||
| auto dx2_data = new float[small_size]; | |||
| lite::Tensor *dx2_tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, small_dim); | |||
| dx2_tensor->SetData(dx2_data); | |||
| dx2_tensor->set_data(dx2_data); | |||
| std::vector<lite::Tensor *> ret_vector = {dy_tensor, x1_tensor, x2_tensor, dx1_tensor, dx2_tensor}; | |||
| return ret_vector; | |||
| @@ -135,7 +135,7 @@ TEST_F(TestArithmeticGradFp32, TestAddGradFp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| delete kernel_obj; | |||
| @@ -173,7 +173,7 @@ TEST_F(TestArithmeticGradFp32, TestAddGrad2Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; //TODO tensor data is unique pointer | |||
| @@ -214,7 +214,7 @@ TEST_F(TestArithmeticGradFp32, TestAddGrad3Fp32) { | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -255,7 +255,7 @@ TEST_F(TestArithmeticGradFp32, TestSubGradFp32) { | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -296,7 +296,7 @@ TEST_F(TestArithmeticGradFp32, TestSubGrad2Fp32) { | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| delete kernel_obj; | |||
| @@ -344,7 +344,7 @@ TEST_F(TestArithmeticGradFp32, TestMulGradFp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| delete kernel_obj; | |||
| @@ -383,7 +383,7 @@ TEST_F(TestArithmeticGradFp32, TestMulGrad2Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -423,7 +423,7 @@ TEST_F(TestArithmeticGradFp32, TestMulGrad3Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -463,7 +463,7 @@ TEST_F(TestArithmeticGradFp32, TestMulGrad4Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -503,7 +503,7 @@ TEST_F(TestArithmeticGradFp32, TestDivGradFp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, dx2_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -544,7 +544,7 @@ TEST_F(TestArithmeticGradFp32, TestDivGrad2Fp32) { | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -584,7 +584,7 @@ TEST_F(TestArithmeticGradFp32, TestDivGrad3Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, output_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| // for (int i = 0; i < 5; i++) delete all_tensors[i]; | |||
| @@ -624,7 +624,7 @@ TEST_F(TestArithmeticGradFp32, Test3DDivGrad2Fp32) { | |||
| EXPECT_EQ(0, lite::CompareRelativeOutput(output_ptr, output_path)); | |||
| for (auto tensor : all_tensors) { | |||
| delete[] reinterpret_cast<float *>(tensor->MutableData()); | |||
| tensor->SetData(nullptr); | |||
| tensor->set_data(nullptr); | |||
| delete tensor; | |||
| } | |||
| delete kernel_obj; | |||
| @@ -36,13 +36,13 @@ TEST_F(TestBiasGradFp32, BiasGradFp32) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_dy({10, 28, 28, 7}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(input_data); | |||
| dy_tensor.set_data(input_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor}; | |||
| auto output_data = new float[7]; | |||
| std::vector<int> dim_dw = {7}; | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(output_data); | |||
| dw_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| lite::InnerContext ctx; | |||
| @@ -66,8 +66,8 @@ TEST_F(TestBiasGradFp32, BiasGradFp32) { | |||
| delete[] input_data; | |||
| delete[] output_data; | |||
| // delete bias_param; | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.SetData(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| delete kernel_obj; | |||
| MS_LOG(INFO) << "BiasGradFp32 passed"; | |||
| } | |||
| @@ -36,7 +36,7 @@ lite::Tensor *TestBNGradFp32::CreateInTensor(std::string file_name, std::vector< | |||
| size_t input_size = 0; | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(file_name.c_str(), &input_size)); | |||
| auto tensor = new lite::Tensor(TypeId::kNumberTypeFloat32, dim); | |||
| tensor->SetData(input_data); | |||
| tensor->set_data(input_data); | |||
| EXPECT_EQ(input_size, tensor->Size()); | |||
| return tensor; | |||
| } | |||
| @@ -108,7 +108,7 @@ TEST_F(TestBNGradFp32, BNGradFp32) { | |||
| EXPECT_EQ(res, 0); | |||
| for (auto v : inputs) { | |||
| delete[] reinterpret_cast<float *>(v->MutableData()); | |||
| v->SetData(nullptr); | |||
| v->set_data(nullptr); | |||
| delete v; | |||
| } | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| @@ -197,7 +197,7 @@ TEST_F(TestBNGradFp32, BNTtrainFp32) { | |||
| res = mindspore::lite::CompareRelativeOutput(save_var, "./test_data/bngrad/running_var_3.bin"); | |||
| EXPECT_EQ(res, 0); | |||
| x_tensor->SetData(nullptr); | |||
| x_tensor->set_data(nullptr); | |||
| delete x_tensor; | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel_obj; | |||
| @@ -85,7 +85,7 @@ TEST_F(TestConvolutionGradFp32, ConvFp32FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 28, 28, 32}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -98,12 +98,12 @@ TEST_F(TestConvolutionGradFp32, ConvFp32FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({1, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({32, 3, 3, 3}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -141,9 +141,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32FilterGrad) { | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| MS_LOG(INFO) << "TestConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -157,21 +157,21 @@ TEST_F(TestConvolutionGradFp32, ConvFp32InputGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 28, 28, 32}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| size_t w_size; | |||
| std::string w_path = "./test_data/conv/convfp32_w_32_3_3_3.bin"; | |||
| auto w_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(w_path.c_str(), &w_size)); | |||
| std::vector<int> dim_dw({32, 3, 3, 3}); | |||
| lite::Tensor w_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| w_tensor.SetData(w_data); | |||
| w_tensor.set_data(w_data); | |||
| size_t output_data_size = | |||
| conv_param->input_batch_ * conv_param->input_h_ * conv_param->input_w_ * conv_param->input_channel_; | |||
| auto dx_data = new float[output_data_size]; | |||
| std::vector<int> dim_dx({1, 28, 28, 3}); | |||
| lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); | |||
| dx_tensor.SetData(dx_data); | |||
| dx_tensor.set_data(dx_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &w_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dx_tensor}; | |||
| @@ -210,9 +210,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32InputGrad) { | |||
| delete[] dx_data; | |||
| delete[] w_data; | |||
| delete[] dy_data; | |||
| w_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dx_tensor.SetData(nullptr); | |||
| w_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| dx_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| // delete conv_param; | |||
| @@ -230,7 +230,7 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupFilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 28, 28, 18}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -243,12 +243,12 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupFilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({1, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({18, 3, 3, 1}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -282,9 +282,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupFilterGrad) { | |||
| delete[] input_data; | |||
| delete[] dy_data; | |||
| delete[] dw_data; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| // delete conv_param; | |||
| @@ -301,21 +301,21 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupInputGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 28, 28, 18}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| size_t w_size; | |||
| std::string w_path = "./test_data/conv/convfp32_w_g3_18_3_3_3.bin"; | |||
| auto w_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(w_path.c_str(), &w_size)); | |||
| std::vector<int> dim_dw({18, 3, 3, 1}); | |||
| lite::Tensor w_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| w_tensor.SetData(w_data); | |||
| w_tensor.set_data(w_data); | |||
| size_t output_data_size = | |||
| conv_param->input_batch_ * conv_param->input_h_ * conv_param->input_w_ * conv_param->input_channel_; | |||
| auto dx_data = new float[output_data_size]; | |||
| std::vector<int> dim_dx({1, 28, 28, 3}); | |||
| lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); | |||
| dx_tensor.SetData(dx_data); | |||
| dx_tensor.set_data(dx_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &w_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dx_tensor}; | |||
| @@ -353,9 +353,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupInputGrad) { | |||
| delete[] dx_data; | |||
| delete[] w_data; | |||
| delete[] dy_data; | |||
| dx_tensor.SetData(nullptr); | |||
| w_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dx_tensor.set_data(nullptr); | |||
| w_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| @@ -374,7 +374,7 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupDilationFilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 26, 26, 18}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -387,12 +387,12 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupDilationFilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({1, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({18, 3, 3, 1}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -426,9 +426,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupDilationFilterGrad) { | |||
| delete[] input_data; | |||
| delete[] dy_data; | |||
| delete[] dw_data; | |||
| dw_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| // delete conv_param; | |||
| @@ -445,21 +445,21 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupDilationInputGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({1, 26, 26, 18}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| size_t w_size; | |||
| std::string w_path = "./test_data/conv/convfp32_w_g3_d2_18_3_3_3.bin"; | |||
| auto w_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(w_path.c_str(), &w_size)); | |||
| std::vector<int> dim_w({18, 3, 3, 1}); | |||
| lite::Tensor w_tensor(TypeId::kNumberTypeFloat32, dim_w); | |||
| w_tensor.SetData(w_data); | |||
| w_tensor.set_data(w_data); | |||
| size_t output_data_size = | |||
| conv_param->input_batch_ * conv_param->input_h_ * conv_param->input_w_ * conv_param->input_channel_; | |||
| auto dx_data = new float[output_data_size]; | |||
| std::vector<int> dim_dx({1, 28, 28, 3}); | |||
| lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); | |||
| dx_tensor.SetData(dx_data); | |||
| dx_tensor.set_data(dx_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &w_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dx_tensor}; | |||
| @@ -493,9 +493,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32GroupDilationInputGrad) { | |||
| delete[] dx_data; | |||
| delete[] w_data; | |||
| delete[] dy_data; | |||
| dx_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| w_tensor.SetData(nullptr); | |||
| dx_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| w_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| // delete conv_param; | |||
| @@ -512,21 +512,21 @@ TEST_F(TestConvolutionGradFp32, ConvGroupDilation) { | |||
| auto x_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(x_path.c_str(), &x_size)); | |||
| std::vector<int> dim_x({1, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| size_t w_size; | |||
| std::string w_path = "./test_data/conv/convfp32_w_g3_d2_18_3_3_3.bin"; | |||
| auto w_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(w_path.c_str(), &w_size)); | |||
| std::vector<int> dim_w({18, 3, 3, 1}); | |||
| lite::Tensor w_tensor(TypeId::kNumberTypeFloat32, dim_w); | |||
| w_tensor.SetData(w_data); | |||
| w_tensor.set_data(w_data); | |||
| size_t output_data_size = | |||
| conv_param->output_batch_ * conv_param->output_h_ * conv_param->output_w_ * conv_param->output_channel_; | |||
| auto y_data = new float[output_data_size]; | |||
| std::vector<int> dim_y({1, 26, 26, 18}); | |||
| lite::Tensor y_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| y_tensor.SetData(y_data); | |||
| y_tensor.set_data(y_data); | |||
| std::vector<lite::Tensor *> inputs = {&x_tensor, &w_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&y_tensor}; | |||
| @@ -569,9 +569,9 @@ TEST_F(TestConvolutionGradFp32, ConvGroupDilation) { | |||
| delete[] y_data; | |||
| delete[] x_data; | |||
| delete[] w_data; | |||
| x_tensor.SetData(nullptr); | |||
| y_tensor.SetData(nullptr); | |||
| w_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| y_tensor.set_data(nullptr); | |||
| w_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel; | |||
| @@ -614,7 +614,7 @@ TEST_F(TestConvolutionGradFp32, ConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 15, 15, 12}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -627,12 +627,12 @@ TEST_F(TestConvolutionGradFp32, ConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 4}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({12, 3, 3, 2}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -670,9 +670,9 @@ TEST_F(TestConvolutionGradFp32, ConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -713,21 +713,21 @@ TEST_F(TestConvolutionGradFp32, ConvGroup2Dilation2Stride2) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 15, 15, 12}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| size_t w_size; | |||
| std::string w_path = "./test_data/conv/convfp32_w_d2_g2_s2_12_2_3_3.bin"; | |||
| auto w_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(w_path.c_str(), &w_size)); | |||
| std::vector<int> dim_w({12, 3, 3, 2}); | |||
| lite::Tensor w_tensor(TypeId::kNumberTypeFloat32, dim_w); | |||
| w_tensor.SetData(w_data); | |||
| w_tensor.set_data(w_data); | |||
| size_t output_data_size = | |||
| conv_param->input_batch_ * conv_param->input_h_ * conv_param->input_w_ * conv_param->input_channel_; | |||
| auto dx_data = new float[output_data_size]; | |||
| std::vector<int> dim_dx({2, 32, 32, 4}); | |||
| lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); | |||
| dx_tensor.SetData(dx_data); | |||
| dx_tensor.set_data(dx_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &w_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dx_tensor}; | |||
| @@ -766,9 +766,9 @@ TEST_F(TestConvolutionGradFp32, ConvGroup2Dilation2Stride2) { | |||
| delete[] dx_data; | |||
| delete[] w_data; | |||
| delete[] dy_data; | |||
| dx_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| w_tensor.SetData(nullptr); | |||
| dx_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| w_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestConvolutionGradFp32 Filter Grad passed"; | |||
| @@ -67,7 +67,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 63, 63, 9}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -80,12 +80,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({3, 3, 3, 9}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -123,9 +123,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -166,7 +166,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 65, 65, 9}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -179,12 +179,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({9, 3, 3, 3}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -222,9 +222,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -265,7 +265,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 65, 65, 9}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -278,12 +278,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({3, 3, 3, 3}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -321,9 +321,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -364,7 +364,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3Stride1FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 34, 34, 9}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -377,12 +377,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3Stride1FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({3, 3, 3, 3}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -420,9 +420,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group3Stride1FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -463,7 +463,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 65, 65, 12}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -476,12 +476,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 4}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({6, 3, 3, 4}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -519,9 +519,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group2Stride2FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -562,7 +562,7 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group12Stride2FilterGrad) { | |||
| auto dy_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(dy_path.c_str(), &dy_size)); | |||
| std::vector<int> dim_dy({2, 65, 65, 12}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(dy_data); | |||
| dy_tensor.set_data(dy_data); | |||
| // runtime part | |||
| printf("Calculating runtime cost...\n"); | |||
| @@ -575,12 +575,12 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group12Stride2FilterGrad) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({2, 32, 32, 12}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input_data); | |||
| x_tensor.set_data(input_data); | |||
| auto dw_data = new float[output_data_size]; | |||
| std::vector<int> dim_dw({1, 3, 3, 12}); | |||
| lite::Tensor dw_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| dw_tensor.SetData(dw_data); | |||
| dw_tensor.set_data(dw_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&dw_tensor}; | |||
| @@ -618,9 +618,9 @@ TEST_F(TestDeConvolutionGradFp32, DeConvFp32Dilation2Group12Stride2FilterGrad) { | |||
| delete[] dw_data; | |||
| delete kernel; | |||
| // delete conv_param; | |||
| dw_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dw_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| MS_LOG(INFO) << "TestDeConvolutionGradFp32 Filter Grad passed"; | |||
| } | |||
| @@ -124,20 +124,20 @@ TEST_F(TestPoolingGradFp32, AvgPoolingKernelGradFp32) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_dy({1, 28, 28, 3}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(input_data); | |||
| dy_tensor.set_data(input_data); | |||
| std::string input1_path = "./test_data/pooling/avgpoolgradfp32_1_x_1_28_28_3.bin"; | |||
| auto input1_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input1_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({1, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input1_data); | |||
| x_tensor.set_data(input1_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| auto output_data = new float[output_data_size]; | |||
| std::vector<int> dim_dx({1, 28, 28, 3}); | |||
| lite::Tensor dx_tensor(TypeId::kNumberTypeFloat32, dim_dx); | |||
| dx_tensor.SetData(output_data); | |||
| dx_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> outputs = {&dx_tensor}; | |||
| lite::InnerContext context; | |||
| @@ -162,9 +162,9 @@ TEST_F(TestPoolingGradFp32, AvgPoolingKernelGradFp32) { | |||
| delete[] input_data; | |||
| delete[] input1_data; | |||
| delete[] output_data; | |||
| dx_tensor.SetData(nullptr); | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| dx_tensor.set_data(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| // delete pooling_param; | |||
| delete kernel_obj; | |||
| MS_LOG(INFO) << "TestAvgPoolingGradFp32 passed"; | |||
| @@ -188,13 +188,13 @@ TEST_F(TestPoolingGradFp32, AvgPoolingBatchGradFp32) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_dy({3, 28, 28, 3}); | |||
| lite::Tensor dy_tensor(TypeId::kNumberTypeFloat32, dim_dy); | |||
| dy_tensor.SetData(input_data); | |||
| dy_tensor.set_data(input_data); | |||
| std::string input1_path = "./test_data/pooling/avgpoolgradfp32_1_x_3_28_28_3.bin"; | |||
| auto input1_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input1_path.c_str(), &input_size)); | |||
| std::vector<int> dim_x({3, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(input1_data); | |||
| x_tensor.set_data(input1_data); | |||
| std::vector<lite::Tensor *> inputs = {&dy_tensor, &x_tensor}; | |||
| @@ -226,8 +226,8 @@ TEST_F(TestPoolingGradFp32, AvgPoolingBatchGradFp32) { | |||
| delete[] input_data; | |||
| delete[] input1_data; | |||
| x_tensor.SetData(nullptr); | |||
| dy_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| dy_tensor.set_data(nullptr); | |||
| // delete pooling_param; | |||
| delete kernel_obj; | |||
| MS_LOG(INFO) << "TestAvgPoolingGradBatchFp32 passed"; | |||
| @@ -253,13 +253,13 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride2Fp32) { | |||
| mindspore::lite::ReadFile("./test_data/pooling/avgpoolgradfp32_s2_x_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_x({pool->output_batch_, pool->input_h_, pool->input_w_, pool->input_channel_}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| auto yt_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/avgpoolgradfp32_s2_dy_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_y({pool->output_batch_, pool->output_h_, pool->output_w_, pool->output_channel_}); | |||
| lite::Tensor yt_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| yt_tensor.SetData(yt_data); | |||
| yt_tensor.set_data(yt_data); | |||
| lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| ASSERT_EQ(out_tensor.MallocData(), 0); | |||
| float *out_data = static_cast<float *>(out_tensor.MutableData()); | |||
| @@ -289,8 +289,8 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride2Fp32) { | |||
| delete[] yt_data; | |||
| // delete[] out_data; | |||
| // delete conv_param; | |||
| x_tensor.SetData(nullptr); | |||
| yt_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| yt_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| MS_LOG(INFO) << "AvgPoolGradStride2Fp32 Filter Grad passed"; | |||
| } | |||
| @@ -315,13 +315,13 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride3Fp32) { | |||
| mindspore::lite::ReadFile("./test_data/pooling/avgpoolgradfp32_s3_x_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_x({pool->output_batch_, pool->input_h_, pool->input_w_, pool->input_channel_}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| auto yt_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/avgpoolgradfp32_s3_dy_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_y({pool->output_batch_, pool->output_h_, pool->output_w_, pool->output_channel_}); | |||
| lite::Tensor yt_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| yt_tensor.SetData(yt_data); | |||
| yt_tensor.set_data(yt_data); | |||
| lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| ASSERT_EQ(out_tensor.MallocData(), 0); | |||
| @@ -354,8 +354,8 @@ TEST_F(TestPoolingGradFp32, AvgPoolGradStride3Fp32) { | |||
| delete[] yt_data; | |||
| // delete[] out_data; | |||
| // delete conv_param; | |||
| x_tensor.SetData(nullptr); | |||
| yt_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| yt_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| MS_LOG(INFO) << "AvgPoolGradStride3Fp32 Filter Grad passed"; | |||
| } | |||
| @@ -431,18 +431,18 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradBatchFp32) { | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_1_x_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_x({3, 28, 28, 3}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| auto y_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_1_dx_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_y({3, 28, 28, 3}); | |||
| lite::Tensor y_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| y_tensor.SetData(y_data); | |||
| y_tensor.set_data(y_data); | |||
| auto yt_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_1_dy_3_28_28_3.bin", &input_size)); | |||
| lite::Tensor yt_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| yt_tensor.SetData(yt_data); | |||
| yt_tensor.set_data(yt_data); | |||
| lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| ASSERT_EQ(out_tensor.MallocData(), 0); | |||
| @@ -476,9 +476,9 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradBatchFp32) { | |||
| delete[] yt_data; | |||
| // delete[] out_data; | |||
| // delete conv_param; | |||
| x_tensor.SetData(nullptr); | |||
| y_tensor.SetData(nullptr); | |||
| yt_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| y_tensor.set_data(nullptr); | |||
| yt_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| MS_LOG(INFO) << "MaxPoolGradBatchFp32 Filter Grad passed"; | |||
| } | |||
| @@ -504,18 +504,18 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradStride2Fp32) { | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s2_x_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_x({maxpool->output_batch_, maxpool->input_h_, maxpool->input_w_, maxpool->input_channel_}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| auto y_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s2_dx_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_y({maxpool->output_batch_, maxpool->output_h_, maxpool->output_w_, maxpool->output_channel_}); | |||
| lite::Tensor y_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| y_tensor.SetData(y_data); | |||
| y_tensor.set_data(y_data); | |||
| auto yt_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s2_dy_3_28_28_3.bin", &input_size)); | |||
| lite::Tensor yt_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| yt_tensor.SetData(yt_data); | |||
| yt_tensor.set_data(yt_data); | |||
| lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| ASSERT_EQ(out_tensor.MallocData(), 0); | |||
| @@ -550,9 +550,9 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradStride2Fp32) { | |||
| delete[] yt_data; | |||
| // delete[] out_data; | |||
| // delete conv_param; | |||
| x_tensor.SetData(nullptr); | |||
| y_tensor.SetData(nullptr); | |||
| yt_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| y_tensor.set_data(nullptr); | |||
| yt_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| MS_LOG(INFO) << "MaxPoolGradStride2Fp32 Filter Grad passed"; | |||
| } | |||
| @@ -578,18 +578,18 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradStride3Fp32) { | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s3_x_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_x({maxpool->output_batch_, maxpool->input_h_, maxpool->input_w_, maxpool->input_channel_}); | |||
| lite::Tensor x_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| x_tensor.SetData(x_data); | |||
| x_tensor.set_data(x_data); | |||
| auto y_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s3_dx_3_28_28_3.bin", &input_size)); | |||
| std::vector<int> dim_y({maxpool->output_batch_, maxpool->output_h_, maxpool->output_w_, maxpool->output_channel_}); | |||
| lite::Tensor y_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| y_tensor.SetData(y_data); | |||
| y_tensor.set_data(y_data); | |||
| auto yt_data = reinterpret_cast<float *>( | |||
| mindspore::lite::ReadFile("./test_data/pooling/maxpoolgradfp32_s3_dy_3_28_28_3.bin", &input_size)); | |||
| lite::Tensor yt_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| yt_tensor.SetData(yt_data); | |||
| yt_tensor.set_data(yt_data); | |||
| lite::Tensor out_tensor(TypeId::kNumberTypeFloat32, dim_x); | |||
| ASSERT_EQ(out_tensor.MallocData(), 0); | |||
| @@ -624,9 +624,9 @@ TEST_F(TestPoolingGradFp32, MaxPoolGradStride3Fp32) { | |||
| delete[] yt_data; | |||
| // delete[] out_data; | |||
| // delete conv_param; | |||
| x_tensor.SetData(nullptr); | |||
| y_tensor.SetData(nullptr); | |||
| yt_tensor.SetData(nullptr); | |||
| x_tensor.set_data(nullptr); | |||
| y_tensor.set_data(nullptr); | |||
| yt_tensor.set_data(nullptr); | |||
| delete kernel; | |||
| MS_LOG(INFO) << "MaxPoolGradStride3Fp32 Filter Grad passed"; | |||
| } | |||
| @@ -37,7 +37,7 @@ TEST_F(TestSoftmaxCrossEntropyFp32, SoftmaxCrossEntropyFp32) { | |||
| auto input_data = reinterpret_cast<float *>(mindspore::lite::ReadFile(input_path.c_str(), &input_size)); | |||
| std::vector<int> dim_y({6, 4}); | |||
| lite::Tensor y_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| y_tensor.SetData(input_data); | |||
| y_tensor.set_data(input_data); | |||
| std::string label_path = "./test_data/operators/sce_fp32_1_l_6.bin"; | |||
| auto ll_labels = reinterpret_cast<int64_t *>(mindspore::lite::ReadFile(label_path.c_str(), &input_size)); | |||
| @@ -47,17 +47,17 @@ TEST_F(TestSoftmaxCrossEntropyFp32, SoftmaxCrossEntropyFp32) { | |||
| std::vector<int> dim_l({6, 4}); | |||
| lite::Tensor l_tensor(TypeId::kNumberTypeInt32, dim_l); | |||
| l_tensor.SetData(labels); | |||
| l_tensor.set_data(labels); | |||
| std::vector<lite::Tensor *> inputs = {&y_tensor, &l_tensor}; | |||
| auto loss = new float[1]; | |||
| std::vector<int> dim_dw({1}); | |||
| lite::Tensor loss_tensor(TypeId::kNumberTypeFloat32, dim_dw); | |||
| loss_tensor.SetData(loss); | |||
| loss_tensor.set_data(loss); | |||
| auto grad = new float[24]; | |||
| lite::Tensor grad_tensor(TypeId::kNumberTypeFloat32, dim_y); | |||
| grad_tensor.SetData(grad); | |||
| grad_tensor.set_data(grad); | |||
| std::vector<lite::Tensor *> outputs = {&loss_tensor, &grad_tensor}; | |||
| lite::InnerContext context; | |||
| @@ -94,10 +94,10 @@ TEST_F(TestSoftmaxCrossEntropyFp32, SoftmaxCrossEntropyFp32) { | |||
| delete[] input_data; | |||
| delete[] loss; | |||
| delete[] grad; | |||
| l_tensor.SetData(nullptr); | |||
| y_tensor.SetData(nullptr); | |||
| loss_tensor.SetData(nullptr); | |||
| grad_tensor.SetData(nullptr); | |||
| l_tensor.set_data(nullptr); | |||
| y_tensor.set_data(nullptr); | |||
| loss_tensor.set_data(nullptr); | |||
| grad_tensor.set_data(nullptr); | |||
| mindspore::kernel::LiteKernel::FreeWorkspace(); | |||
| delete kernel_obj; | |||
| MS_LOG(INFO) << "SoftmaxCrossEntropyFp32 passed"; | |||
| @@ -35,9 +35,9 @@ TEST_F(TestQuantizedAdd, Add) { | |||
| int8_t input_data0[] = {-102, 25, -51, 89, -102, 25, -51, 89, -102, 25}; // -0.8 0.2 -0.4 0.7 | |||
| int8_t input_data1[] = {38, 51, 64, -102, 38, 51, 64, -102, 38, 51}; // 0.3 0.4 0.5 -0.8 | |||
| int8_t output_data[10] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 | |||
| const lite::QuantArg quant_in1 = {0.00784314f, 0}; | |||
| @@ -68,8 +68,8 @@ TEST_F(TestQuantizedAdd, Add) { | |||
| EXPECT_EQ(output_data[i], expect0[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -47,7 +47,7 @@ TEST_F(TestArithmeticSelfInt8, floor_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -55,7 +55,7 @@ TEST_F(TestArithmeticSelfInt8, floor_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -82,8 +82,8 @@ TEST_F(TestArithmeticSelfInt8, floor_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -107,7 +107,7 @@ TEST_F(TestArithmeticSelfInt8, floor_quant1_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -115,7 +115,7 @@ TEST_F(TestArithmeticSelfInt8, floor_quant1_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -142,8 +142,8 @@ TEST_F(TestArithmeticSelfInt8, floor_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -167,7 +167,7 @@ TEST_F(TestArithmeticSelfInt8, round_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -175,7 +175,7 @@ TEST_F(TestArithmeticSelfInt8, round_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -202,8 +202,8 @@ TEST_F(TestArithmeticSelfInt8, round_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -227,7 +227,7 @@ TEST_F(TestArithmeticSelfInt8, round_quant1_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -235,7 +235,7 @@ TEST_F(TestArithmeticSelfInt8, round_quant1_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -262,8 +262,8 @@ TEST_F(TestArithmeticSelfInt8, round_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -287,7 +287,7 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -295,7 +295,7 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -322,8 +322,8 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -347,7 +347,7 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant1_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -355,7 +355,7 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant1_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -382,8 +382,8 @@ TEST_F(TestArithmeticSelfInt8, ceil_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -407,7 +407,7 @@ TEST_F(TestArithmeticSelfInt8, abs_quant0_thread0) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -415,7 +415,7 @@ TEST_F(TestArithmeticSelfInt8, abs_quant0_thread0) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -442,8 +442,8 @@ TEST_F(TestArithmeticSelfInt8, abs_quant0_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -467,7 +467,7 @@ TEST_F(TestArithmeticSelfInt8, abs_quant1_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -475,7 +475,7 @@ TEST_F(TestArithmeticSelfInt8, abs_quant1_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -502,8 +502,8 @@ TEST_F(TestArithmeticSelfInt8, abs_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -527,7 +527,7 @@ TEST_F(TestArithmeticSelfInt8, sin_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -535,7 +535,7 @@ TEST_F(TestArithmeticSelfInt8, sin_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -562,8 +562,8 @@ TEST_F(TestArithmeticSelfInt8, sin_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -587,7 +587,7 @@ TEST_F(TestArithmeticSelfInt8, cos_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -595,7 +595,7 @@ TEST_F(TestArithmeticSelfInt8, cos_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -622,8 +622,8 @@ TEST_F(TestArithmeticSelfInt8, cos_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -647,7 +647,7 @@ TEST_F(TestArithmeticSelfInt8, log_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -655,7 +655,7 @@ TEST_F(TestArithmeticSelfInt8, log_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -682,8 +682,8 @@ TEST_F(TestArithmeticSelfInt8, log_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -707,7 +707,7 @@ TEST_F(TestArithmeticSelfInt8, sqrt_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -715,7 +715,7 @@ TEST_F(TestArithmeticSelfInt8, sqrt_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -742,8 +742,8 @@ TEST_F(TestArithmeticSelfInt8, sqrt_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -767,7 +767,7 @@ TEST_F(TestArithmeticSelfInt8, rsqrt_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -775,7 +775,7 @@ TEST_F(TestArithmeticSelfInt8, rsqrt_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -802,8 +802,8 @@ TEST_F(TestArithmeticSelfInt8, rsqrt_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -827,7 +827,7 @@ TEST_F(TestArithmeticSelfInt8, square_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -835,7 +835,7 @@ TEST_F(TestArithmeticSelfInt8, square_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -862,8 +862,8 @@ TEST_F(TestArithmeticSelfInt8, square_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -887,7 +887,7 @@ TEST_F(TestArithmeticSelfInt8, square_quant1_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -895,7 +895,7 @@ TEST_F(TestArithmeticSelfInt8, square_quant1_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -922,8 +922,8 @@ TEST_F(TestArithmeticSelfInt8, square_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -947,7 +947,7 @@ TEST_F(TestArithmeticSelfInt8, logical_not_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -955,7 +955,7 @@ TEST_F(TestArithmeticSelfInt8, logical_not_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -982,8 +982,8 @@ TEST_F(TestArithmeticSelfInt8, logical_not_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -73,11 +73,11 @@ TEST_F(TestBatchnormInt8, FusedTest) { | |||
| inputs_tensor.push_back(&input2_tensor); | |||
| inputs_tensor.push_back(&input3_tensor); | |||
| inputs_tensor.push_back(&input4_tensor); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input3_tensor.SetData(in_data3.data()); | |||
| input4_tensor.SetData(in_data4.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| input3_tensor.set_data(in_data3.data()); | |||
| input4_tensor.set_data(in_data4.data()); | |||
| input0_tensor.set_shape(shape); | |||
| input1_tensor.set_shape({2}); | |||
| input2_tensor.set_shape({2}); | |||
| @@ -94,7 +94,7 @@ TEST_F(TestBatchnormInt8, FusedTest) { | |||
| std::vector<int8_t> corr_out = {-22, -28, -20, -26, -17, -24, -28, -42, -30, -44, -33, -46}; | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(shape); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| @@ -118,12 +118,12 @@ TEST_F(TestBatchnormInt8, FusedTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| input3_tensor.SetData(nullptr); | |||
| input4_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| input3_tensor.set_data(nullptr); | |||
| input4_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| MS_LOG(INFO) << "TestBathNormFp32 accuracy passed"; | |||
| } | |||
| @@ -160,9 +160,9 @@ TEST_F(TestBatchnormInt8, BNTest) { | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| inputs_tensor.push_back(&input1_tensor); | |||
| inputs_tensor.push_back(&input2_tensor); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input2_tensor.SetData(in_data2.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input2_tensor.set_data(in_data2.data()); | |||
| input0_tensor.set_shape(shape); | |||
| input1_tensor.set_shape({2}); | |||
| input2_tensor.set_shape({2}); | |||
| @@ -175,7 +175,7 @@ TEST_F(TestBatchnormInt8, BNTest) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(shape); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| @@ -199,10 +199,10 @@ TEST_F(TestBatchnormInt8, BNTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| input2_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| input2_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| MS_LOG(INFO) << "TestBathNormFp32 accuracy passed"; | |||
| } | |||
| @@ -36,9 +36,9 @@ TEST_F(TestBiasAddInt8, BiasAdd) { | |||
| int8_t input_data0[] = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||
| int8_t input_data1[] = {1, 1}; | |||
| int8_t output_data[12] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor0, &in_tensor1}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -70,8 +70,8 @@ TEST_F(TestBiasAddInt8, BiasAdd) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -51,13 +51,13 @@ TEST_F(TestConcatInt8, Concat1_axis0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -68,7 +68,7 @@ TEST_F(TestConcatInt8, Concat1_axis0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -93,9 +93,9 @@ TEST_F(TestConcatInt8, Concat1_axis0) { | |||
| std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}; | |||
| PrintData("output data", output, input1.size() + input2.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size() + input2.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -123,13 +123,13 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -140,7 +140,7 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -166,9 +166,9 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2) { | |||
| PrintData("output data", output, input1.size() + input2.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size() + input2.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -196,13 +196,13 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2_quant1) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -213,7 +213,7 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2_quant1) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -239,9 +239,9 @@ TEST_F(TestConcatInt8, Concat1_axis1_thread2_quant1) { | |||
| PrintData("output data", output, input1.size() + input2.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size() + input2.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -71,7 +71,7 @@ TEST_F(TestConv1x1Int8, Input1x1PrePack2) { | |||
| int Conv1x1Int8TestInit1_perchannel(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, int8_t **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| auto in_quant_arg = new mindspore::lite::QuantArg(); | |||
| in_quant_arg->zeroPoint = -42, in_quant_arg->scale = 0.117647; | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| @@ -81,7 +81,8 @@ int Conv1x1Int8TestInit1_perchannel(std::vector<lite::Tensor *> *inputs_, std::v | |||
| memcpy(in_t->MutableData(), in, in_t->ElementsNum() * sizeof(int8_t)); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = | |||
| new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| auto weight_quant_arg1 = new mindspore::lite::QuantArg(); | |||
| weight_quant_arg1->zeroPoint = 66, weight_quant_arg1->scale = 0.96439215686275; | |||
| @@ -96,7 +97,7 @@ int Conv1x1Int8TestInit1_perchannel(std::vector<lite::Tensor *> *inputs_, std::v | |||
| memcpy(weight_t->MutableData(), weight, weight_t->ElementsNum() * sizeof(int8_t)); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| auto output_quant_arg = new mindspore::lite::QuantArg(); | |||
| output_quant_arg->zeroPoint = 7, output_quant_arg->scale = 0.294321233; | |||
| @@ -139,7 +140,7 @@ TEST_F(TestConv1x1Int8, Conv1x1TestPerChannel) { | |||
| int Conv1x1Int8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, int8_t **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| auto in_quant_arg = new mindspore::lite::QuantArg(); | |||
| in_quant_arg->zeroPoint = -42, in_quant_arg->scale = 0.117647; | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| @@ -151,7 +152,8 @@ int Conv1x1Int8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite: | |||
| reinterpret_cast<int8_t *>(in_t->MutableData())); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = | |||
| new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| auto weight_quant_arg = new mindspore::lite::QuantArg(); | |||
| weight_quant_arg->zeroPoint = 66, weight_quant_arg->scale = 0.036439215686275; | |||
| weight_t->AddQuantParam(*weight_quant_arg); | |||
| @@ -162,7 +164,7 @@ int Conv1x1Int8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite: | |||
| reinterpret_cast<int8_t *>(weight_t->MutableData())); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| auto output_quant_arg = new mindspore::lite::QuantArg(); | |||
| output_quant_arg->zeroPoint = 7, output_quant_arg->scale = 0.234321233; | |||
| @@ -208,7 +210,7 @@ TEST_F(TestConv1x1Int8, Conv1x1Int8Test1) { | |||
| int Conv1x1Int8TestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite::Tensor *> *outputs_, | |||
| ConvParameter *conv_param, int8_t **correct) { | |||
| size_t buffer_size; | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| auto in_quant_arg = new mindspore::lite::QuantArg(); | |||
| in_quant_arg->zeroPoint = -42, in_quant_arg->scale = 0.117647; | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| @@ -219,7 +221,8 @@ int Conv1x1Int8TestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite: | |||
| inputs_->push_back(in_t); | |||
| delete[] input; | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *weight_t = | |||
| new Tensor(kNumberTypeInt8, {3, 1, 1, 4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| auto weight_quant_arg = new mindspore::lite::QuantArg(); | |||
| weight_quant_arg->zeroPoint = 66, weight_quant_arg->scale = 0.036439215686275; | |||
| weight_t->AddQuantParam(*weight_quant_arg); | |||
| @@ -230,7 +233,7 @@ int Conv1x1Int8TestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite: | |||
| inputs_->push_back(weight_t); | |||
| delete[] weight; | |||
| Tensor *bias_t = new Tensor(kNumberTypeInt32, {4}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *bias_t = new Tensor(kNumberTypeInt32, {4}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| std::string bias_path = "./bias"; | |||
| auto bias = mindspore::lite::ReadFile(bias_path.c_str(), &buffer_size); | |||
| @@ -238,7 +241,7 @@ int Conv1x1Int8TestInit2(std::vector<lite::Tensor *> *inputs_, std::vector<lite: | |||
| inputs_->push_back(bias_t); | |||
| delete[] bias; | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 2, 3, 3}, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| auto output_quant_arg = new mindspore::lite::QuantArg(); | |||
| output_quant_arg->zeroPoint = 7, output_quant_arg->scale = 0.234321233; | |||
| @@ -48,7 +48,7 @@ TEST_F(TestCropInt8, crop_1d_axis0_offset0_quant0_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -58,7 +58,7 @@ TEST_F(TestCropInt8, crop_1d_axis0_offset0_quant0_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -87,8 +87,8 @@ TEST_F(TestCropInt8, crop_1d_axis0_offset0_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -112,7 +112,7 @@ TEST_F(TestCropInt8, crop_2d_axis1_offset0_quant0_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -122,7 +122,7 @@ TEST_F(TestCropInt8, crop_2d_axis1_offset0_quant0_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -151,8 +151,8 @@ TEST_F(TestCropInt8, crop_2d_axis1_offset0_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -176,7 +176,7 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -186,7 +186,7 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -215,8 +215,8 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -241,7 +241,7 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -251,7 +251,7 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -280,8 +280,8 @@ TEST_F(TestCropInt8, crop_3d_axis1_offset0_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -305,7 +305,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -315,7 +315,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -344,8 +344,8 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -369,7 +369,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset0_quant0_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -379,7 +379,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset0_quant0_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -408,8 +408,8 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset0_quant0_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -433,7 +433,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant0_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -443,7 +443,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant0_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -475,8 +475,8 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant0_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -500,7 +500,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant1_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -510,7 +510,7 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant1_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -542,8 +542,8 @@ TEST_F(TestCropInt8, crop_4d_axis1_offset1_quant1_thread0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -569,7 +569,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -579,7 +579,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -608,8 +608,8 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -635,7 +635,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread3) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -645,7 +645,7 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread3) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -674,8 +674,8 @@ TEST_F(TestCropInt8, crop_4d_axis0_offset0_quant0_thread3) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -310,7 +310,7 @@ int DeConvInt8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite:: | |||
| ConvParameter *conv_param, int8_t **correct) { | |||
| /* float data from deconv fp32 testcase : DeConvTestInit2 */ | |||
| /* vq = (vi - zp) * s vi = vq / s + zp */ | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 4, 2, 3}, Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {1, 4, 2, 3}, Format_NHWC, lite::Tensor::Category::VAR); | |||
| in_t->MallocData(); | |||
| int8_t in[] = {6, 43, 38, 24, -8, 12, 41, -24, -20, 41, -19, -6, -26, -6, 23, -31, 34, 45, 8, 45, -39, -27, -48, 12}; | |||
| memcpy(in_t->MutableData(), in, sizeof(int8_t) * in_t->ElementsNum()); | |||
| @@ -319,7 +319,7 @@ int DeConvInt8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite:: | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| inputs_->push_back(in_t); | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 3, 3, 2}, Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *weight_t = new Tensor(kNumberTypeInt8, {3, 3, 3, 2}, Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| weight_t->MallocData(); | |||
| int8_t weight[] = {66, 89, 98, 74, 95, 86, 125, 95, 105, 83, 116, 94, 90, 80, 86, 59, 72, 92, | |||
| 64, 76, 92, 80, 90, 87, 106, 55, 105, 60, 75, 53, 81, 81, 98, 81, 86, 59, | |||
| @@ -330,7 +330,7 @@ int DeConvInt8TestInit1(std::vector<lite::Tensor *> *inputs_, std::vector<lite:: | |||
| weight_t->AddQuantParam(*w_quant_arg); | |||
| inputs_->push_back(weight_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 7, 3, 2}, Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {1, 7, 3, 2}, Format_NHWC, lite::Tensor::Category::VAR); | |||
| out_t->MallocData(); | |||
| QuantArg *out_quant_arg = new QuantArg(); | |||
| out_quant_arg->zeroPoint = 31, out_quant_arg->scale = 0.3439215686275; | |||
| @@ -36,9 +36,9 @@ TEST_F(TestDivInt8, DivInt8) { | |||
| int8_t input_data0[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49}; | |||
| int8_t input_data1[] = {126, -38, -115, 106, -98, 119, 103, 81, -114, 68}; | |||
| int8_t output_data[10] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 | |||
| const lite::QuantArg quant_in1 = {0.00784314f, 0}; | |||
| @@ -69,8 +69,8 @@ TEST_F(TestDivInt8, DivInt8) { | |||
| EXPECT_EQ(output_data[i], expect0[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -42,7 +42,7 @@ extern void QuantProcess(float *input, int len, float min, float max, float *sca | |||
| extern lite::Tensor *MakeQuantTensor(int8_t *data, int len, std::vector<int> *shape, float scale, int zp); | |||
| lite::Tensor *MakeIntTensor(int *data, int len, std::vector<int> *shape) { | |||
| auto tensor = new lite::Tensor(kNumberTypeInt32, *shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto tensor = new lite::Tensor(kNumberTypeInt32, *shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| tensor->MallocData(); | |||
| auto tensor_ptr = reinterpret_cast<int *>(tensor->MutableData()); | |||
| memcpy(tensor_ptr, data, len * sizeof(int)); | |||
| @@ -57,8 +57,8 @@ TEST_F(TestGatherNdInt8, GatherNdTest) { | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| inputs_tensor.push_back(&input1_tensor); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input0_tensor.set_shape(shape); | |||
| input1_tensor.set_shape({3, 3}); | |||
| @@ -71,7 +71,7 @@ TEST_F(TestGatherNdInt8, GatherNdTest) { | |||
| std::vector<int8_t> corr_out = {6, 7, 8, 9, 0, 6, 7, 8, 9, 0, 1, 2, 3, 4, 5}; | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(out_shape); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| @@ -94,9 +94,9 @@ TEST_F(TestGatherNdInt8, GatherNdTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| MS_LOG(INFO) << "TestGatherNd accuracy passed"; | |||
| } | |||
| } // namespace mindspore | |||
| @@ -55,8 +55,8 @@ TEST_F(TestGatherInt8, GatherTest) { | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| inputs_tensor.push_back(&input1_tensor); | |||
| input0_tensor.SetData(in_data.data()); | |||
| input1_tensor.SetData(in_data1.data()); | |||
| input0_tensor.set_data(in_data.data()); | |||
| input1_tensor.set_data(in_data1.data()); | |||
| input0_tensor.set_shape(shape); | |||
| input1_tensor.set_shape({2}); | |||
| @@ -69,7 +69,7 @@ TEST_F(TestGatherInt8, GatherTest) { | |||
| std::vector<int8_t> corr_out = {-11, -41, -21, -51, -31, -61, 11, 41, 21, 51, 31, 61}; | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.set_shape(shape); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| @@ -92,9 +92,9 @@ TEST_F(TestGatherInt8, GatherTest) { | |||
| std::cout << std::endl; | |||
| CompareOutputData(output.data(), corr_out.data(), output0_tensor.ElementsNum(), 0.001); | |||
| input0_tensor.SetData(nullptr); | |||
| input1_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| input1_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| MS_LOG(INFO) << "TestGather_int8 accuracy passed"; | |||
| } | |||
| } // namespace mindspore | |||
| @@ -36,8 +36,8 @@ TEST_F(TestHSwishInt8, HSwish) { | |||
| int8_t input_data[] = {-116, -105, -93, -35, 23, 35, 46, 104}; // -3.5f, -3.0f, -2.5f, 0.f, 2.5f, 3.0f, 3.5f, 6.0f | |||
| int8_t output_data[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in = {0.0431373f, -35}; // -4.0 -- 7.0 | |||
| const lite::QuantArg quant_out = {0.0392157f, -52}; // -3.0 -- 7.0 | |||
| @@ -69,7 +69,7 @@ TEST_F(TestHSwishInt8, HSwish) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -47,7 +47,7 @@ void QuantProcess(float *input, int len, float min, float max, float *scale, int | |||
| } | |||
| lite::Tensor *MakeQuantTensor(int8_t *data, int len, std::vector<int> *shape, float scale, int zp) { | |||
| auto tensor = new lite::Tensor(kNumberTypeInt8, *shape, schema::Format_NHWC, lite::Tensor::Category::CONST); | |||
| auto tensor = new lite::Tensor(kNumberTypeInt8, *shape, schema::Format_NHWC, lite::Tensor::Category::CONST_TENSOR); | |||
| tensor->MallocData(); | |||
| if (data) { | |||
| auto tensor_ptr = reinterpret_cast<int8_t *>(tensor->MutableData()); | |||
| @@ -51,13 +51,13 @@ TEST_F(TestMulInt8, Mul_quant0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -68,7 +68,7 @@ TEST_F(TestMulInt8, Mul_quant0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -92,9 +92,9 @@ TEST_F(TestMulInt8, Mul_quant0) { | |||
| std::vector<int8_t> except_result = {1, 4, 3, 8, 5, 12, 21, 32, 27, 40, 33, 48}; | |||
| PrintData("output data", output, input1.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -122,13 +122,13 @@ TEST_F(TestMulInt8, Mul_quant0_thread0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -139,7 +139,7 @@ TEST_F(TestMulInt8, Mul_quant0_thread0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -163,9 +163,9 @@ TEST_F(TestMulInt8, Mul_quant0_thread0) { | |||
| std::vector<int8_t> except_result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}; | |||
| PrintData("output data", output, input1.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -193,13 +193,13 @@ TEST_F(TestMulInt8, Mul_quant1) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -210,7 +210,7 @@ TEST_F(TestMulInt8, Mul_quant1) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -234,9 +234,9 @@ TEST_F(TestMulInt8, Mul_quant1) { | |||
| std::vector<int8_t> except_result = {1, 2, 2, 4, 3, 6, 11, 16, 14, 20, 17, 24}; | |||
| PrintData("output data", output, input1.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -264,13 +264,13 @@ TEST_F(TestMulInt8, Mul_quant1_thread1) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -281,7 +281,7 @@ TEST_F(TestMulInt8, Mul_quant1_thread1) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -305,9 +305,9 @@ TEST_F(TestMulInt8, Mul_quant1_thread1) { | |||
| std::vector<int8_t> except_result = {1, 2, 2, 4, 3, 6, 11, 16, 14, 20, 17, 24}; | |||
| PrintData("output data", output, input1.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -335,13 +335,13 @@ TEST_F(TestMulInt8, test) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| lite::Tensor *input_tensor2 = new lite::Tensor; | |||
| input_tensor2->SetData(input2.data()); | |||
| input_tensor2->set_data(input2.data()); | |||
| input_tensor2->set_shape(shape2); | |||
| input_tensor2->AddQuantParam(input_quant_arg); | |||
| input_tensor2->set_data_type(tid_int8); | |||
| @@ -352,7 +352,7 @@ TEST_F(TestMulInt8, test) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -376,9 +376,9 @@ TEST_F(TestMulInt8, test) { | |||
| std::vector<int8_t> except_result = {1, 4, 9, 16, 25, 36, 7, 16, 27, 40, 55, 72}; | |||
| PrintData("output data", output, input1.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| input_tensor2->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| input_tensor2->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete input_tensor2; | |||
| delete output0_tensor; | |||
| @@ -34,7 +34,7 @@ class TestPadInt8 : public mindspore::CommonTest { | |||
| int PadInt8TestInit1(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, PadParameter *pad_param, | |||
| int8_t **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {3}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {3}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| in_t->MallocData(); | |||
| int8_t in[] = {1, 1, 1}; | |||
| memcpy(in_t->MutableData(), in, sizeof(int8_t) * in_t->ElementsNum()); | |||
| @@ -43,7 +43,7 @@ int PadInt8TestInit1(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outp | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| inputs_->push_back(in_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {7}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {7}, schema::Format_NHWC, lite::Tensor::CONST_TENSOR); | |||
| out_t->MallocData(); | |||
| QuantArg *out_quant_arg = new QuantArg(); | |||
| out_quant_arg->zeroPoint = 10, out_quant_arg->scale = 0.31228156; | |||
| @@ -85,7 +85,7 @@ TEST_F(TestPadInt8, PadInt8Test1) { | |||
| int PadInt8TestInit2(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, PadParameter *pad_param, | |||
| int8_t **correct) { | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {6, 2}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {6, 2}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| in_t->MallocData(); | |||
| int8_t in[] = {18, 71, 99, -6, 5, -119, 86, 13, 15, -85, -41, -77}; | |||
| memcpy(in_t->MutableData(), in, sizeof(int8_t) * in_t->ElementsNum()); | |||
| @@ -94,7 +94,7 @@ int PadInt8TestInit2(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outp | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| inputs_->push_back(in_t); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {10, 5}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {10, 5}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| out_t->MallocData(); | |||
| QuantArg *out_quant_arg = new QuantArg(); | |||
| out_quant_arg->zeroPoint = 10, out_quant_arg->scale = 0.31228156; | |||
| @@ -138,8 +138,7 @@ TEST_F(TestPadInt8, PadInt8Test2) { | |||
| int PadInt8TestInit4(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outputs_, PadParameter *pad_param, | |||
| int8_t **correct) { | |||
| Tensor *in_t = | |||
| new Tensor(kNumberTypeInt8, {2, 3, 2, 1}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *in_t = new Tensor(kNumberTypeInt8, {2, 3, 2, 1}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| in_t->MallocData(); | |||
| int8_t in[] = {73, 24, 7, -31, -109, -2, 69, -64, 51, -45, 38, 53}; | |||
| memcpy(in_t->MutableData(), in, sizeof(int8_t) * in_t->ElementsNum()); | |||
| @@ -148,8 +147,7 @@ int PadInt8TestInit4(std::vector<Tensor *> *inputs_, std::vector<Tensor *> *outp | |||
| in_t->AddQuantParam(*in_quant_arg); | |||
| inputs_->push_back(in_t); | |||
| Tensor *out_t = | |||
| new Tensor(kNumberTypeInt8, {6, 6, 4, 3}, schema::Format_NHWC, lite::TensorCategory(NodeType_Parameter)); | |||
| Tensor *out_t = new Tensor(kNumberTypeInt8, {6, 6, 4, 3}, schema::Format_NHWC, lite::Tensor::VAR); | |||
| out_t->MallocData(); | |||
| QuantArg *out_quant_arg = new QuantArg(); | |||
| out_quant_arg->zeroPoint = 10, out_quant_arg->scale = 0.31228156; | |||
| @@ -52,7 +52,7 @@ TEST_F(TestPowerInt8, PowerInt8) { | |||
| lite::Tensor input0_tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| input0_tensor.AddQuantParam(input_quant_arg); | |||
| input0_tensor.set_data_type(tid_int8); | |||
| @@ -62,7 +62,7 @@ TEST_F(TestPowerInt8, PowerInt8) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| output0_tensor.set_data_type(tid_int8); | |||
| @@ -81,8 +81,8 @@ TEST_F(TestPowerInt8, PowerInt8) { | |||
| std::vector<int8_t> except_result = {-112, -65, 15, 127}; | |||
| CompareOutputData(output.data(), except_result.data(), input.size(), 0.000001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestPowerInt8, normal) { | |||
| @@ -116,12 +116,12 @@ TEST_F(TestPowerInt8, normal) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| inputs_tensor.push_back(&input1_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| input0_tensor.AddQuantParam(input_quant_arg); | |||
| input0_tensor.set_data_type(tid_int8); | |||
| input1_tensor.SetData(input1.data()); | |||
| input1_tensor.set_data(input1.data()); | |||
| input1_tensor.set_shape(in_shape1); | |||
| input1_tensor.AddQuantParam(exp_quant_arg); | |||
| input1_tensor.set_data_type(tid_int8); | |||
| @@ -131,7 +131,7 @@ TEST_F(TestPowerInt8, normal) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| output0_tensor.set_data_type(tid_int8); | |||
| @@ -150,7 +150,7 @@ TEST_F(TestPowerInt8, normal) { | |||
| std::vector<int8_t> except_result = {-99, 95, 124, -14}; | |||
| CompareOutputData(output.data(), except_result.data(), input.size(), 0.000001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -48,7 +48,7 @@ TEST_F(TestPreluInt8, prelu_1) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -58,7 +58,7 @@ TEST_F(TestPreluInt8, prelu_1) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -87,8 +87,8 @@ TEST_F(TestPreluInt8, prelu_1) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete ctx; | |||
| } | |||
| @@ -40,7 +40,7 @@ TEST_F(QuantDTypeCastTestFp32, QuantDTypeCastTest1) { | |||
| std::vector<int8_t> input = {10, 14, 29, 33, 52, 99, 19, 43, 90, 52, 19, 24, 57, 127, 76, 123}; | |||
| std::vector<int> in_shape = {1, 4, 4, 1}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input.data()); | |||
| input_tensor.set_data(input.data()); | |||
| input_tensor.set_shape(in_shape); | |||
| input_tensor.set_data_type(kNumberTypeInt8); | |||
| input_tensor.SetFormat(schema::Format_NHWC); | |||
| @@ -55,7 +55,7 @@ TEST_F(QuantDTypeCastTestFp32, QuantDTypeCastTest1) { | |||
| std::vector<float> output(16); | |||
| std::vector<int> out_shape = {1, 4, 4, 1}; | |||
| lite::Tensor output_tensor; | |||
| output_tensor.SetData(output.data()); | |||
| output_tensor.set_data(output.data()); | |||
| output_tensor.set_shape(out_shape); | |||
| output_tensor.set_data_type(kNumberTypeFloat32); | |||
| // output_tensor.SetFormat(schema::Format_NHWC); | |||
| @@ -89,7 +89,7 @@ TEST_F(QuantDTypeCastTestFp32, QuantDTypeCastTest2) { | |||
| std::vector<float> input = {1, 2, 5, 6, 10, -20, 3, 8, 18, 10, 3, 4, 11, 16, 15, 25}; | |||
| std::vector<int> in_shape = {1, 4, 4, 1}; | |||
| lite::Tensor input_tensor; | |||
| input_tensor.SetData(input.data()); | |||
| input_tensor.set_data(input.data()); | |||
| input_tensor.set_shape(in_shape); | |||
| // input_tensor.SetFormat(schema::Format_NHWC); | |||
| input_tensor.set_data_type(kNumberTypeFloat32); | |||
| @@ -102,7 +102,7 @@ TEST_F(QuantDTypeCastTestFp32, QuantDTypeCastTest2) { | |||
| std::vector<int8_t> output(16); | |||
| std::vector<int> out_shape = {1, 4, 4, 1}; | |||
| lite::Tensor output_tensor; | |||
| output_tensor.SetData(output.data()); | |||
| output_tensor.set_data(output.data()); | |||
| output_tensor.set_shape(out_shape); | |||
| output_tensor.SetFormat(schema::Format_NHWC); | |||
| output_tensor.set_data_type(kNumberTypeInt8); | |||
| @@ -57,20 +57,20 @@ class TestReduceInt8 : public mindspore::CommonTest { | |||
| }; | |||
| void TestReduceInt8::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestReduceInt8::Prepare(const std::vector<int> &in_shape, const std::vector<int> &out_shape, int8_t *input_data, | |||
| int8_t *output_data, ReduceMode mode, const int *axes, const int num_axes) { | |||
| in_tensor_.set_data_type(kNumberTypeInt8); | |||
| in_tensor_.set_shape(in_shape); | |||
| in_tensor_.SetData(input_data); | |||
| in_tensor_.set_data(input_data); | |||
| in_tensor_.AddQuantParam(quant_in_); | |||
| out_tensor_.set_data_type(kNumberTypeInt8); | |||
| out_tensor_.set_shape(out_shape); | |||
| out_tensor_.SetData(output_data); | |||
| out_tensor_.set_data(output_data); | |||
| out_tensor_.AddQuantParam(quant_out_); | |||
| param_.mode_ = static_cast<int>(mode); | |||
| @@ -34,8 +34,8 @@ TEST_F(TestReluXInt8, Relu) { | |||
| int8_t input_data[] = {-102, 25, -51, 89}; // -0.8 0.2 -0.4 0.7 | |||
| int8_t output_data[4] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in = {0.00784314f, 0}; // -1.0--1.0 -> | |||
| const lite::QuantArg quant_out = {0.00784314f, 0}; | |||
| @@ -67,8 +67,8 @@ TEST_F(TestReluXInt8, Relu) { | |||
| EXPECT_EQ(output_data[i], expect0[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| TEST_F(TestReluXInt8, Relu6) { | |||
| @@ -78,8 +78,8 @@ TEST_F(TestReluXInt8, Relu6) { | |||
| // -2.5f, -1.5f, 1.25f, 3.0f, 4.5f, 6.0f, 6.5f, 9.0f | |||
| int8_t input_data[] = {-118, -98, -44, -10, 19, 49, 59, 108}; | |||
| int8_t output_data[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in = {0.0509804f, -69}; // -3.0 -- 10.0 | |||
| const lite::QuantArg quant_out = {0.0392157f, -128}; // 0.0 -- 10.0 | |||
| @@ -112,7 +112,7 @@ TEST_F(TestReluXInt8, Relu6) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -47,7 +47,7 @@ TEST_F(TestReshapeInt8, reshape_quant0) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -57,7 +57,7 @@ TEST_F(TestReshapeInt8, reshape_quant0) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -83,8 +83,8 @@ TEST_F(TestReshapeInt8, reshape_quant0) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -107,7 +107,7 @@ TEST_F(TestReshapeInt8, reshape_quant1_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -117,7 +117,7 @@ TEST_F(TestReshapeInt8, reshape_quant1_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -143,8 +143,8 @@ TEST_F(TestReshapeInt8, reshape_quant1_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), input1.size(), 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -47,8 +47,8 @@ class TestResizeBilinearInt8 : public mindspore::CommonTest { | |||
| }; | |||
| void TestResizeBilinearInt8::TearDown() { | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| void TestResizeBilinearInt8::Prepare(const std::vector<int> &in_shape, const std::vector<int> &out_shape, | |||
| @@ -57,12 +57,12 @@ void TestResizeBilinearInt8::Prepare(const std::vector<int> &in_shape, const std | |||
| const int thread_num) { | |||
| in_tensor.set_data_type(kNumberTypeInt8); | |||
| in_tensor.set_shape(in_shape); | |||
| in_tensor.SetData(input_data); | |||
| in_tensor.set_data(input_data); | |||
| in_tensor.AddQuantParam(quant_in); | |||
| out_tensor.set_data_type(kNumberTypeInt8); | |||
| out_tensor.set_shape(out_shape); | |||
| out_tensor.SetData(output_data); | |||
| out_tensor.set_data(output_data); | |||
| out_tensor.AddQuantParam(quant_out); | |||
| inputs.push_back(&in_tensor); | |||
| @@ -52,12 +52,12 @@ void TestResizeNearestNeighborInt8::Prepare(const std::vector<int> &in_shape, co | |||
| const QuantArg quant_out, const bool align_corners, const int thread_num) { | |||
| in_tensor.set_data_type(kNumberTypeInt8); | |||
| in_tensor.set_shape(in_shape); | |||
| in_tensor.SetData(input_data); | |||
| in_tensor.set_data(input_data); | |||
| in_tensor.AddQuantParam(quant_in); | |||
| out_tensor.set_data_type(kNumberTypeInt8); | |||
| out_tensor.set_shape(out_shape); | |||
| out_tensor.SetData(output_data); | |||
| out_tensor.set_data(output_data); | |||
| out_tensor.AddQuantParam(quant_out); | |||
| inputs.push_back(&in_tensor); | |||
| @@ -76,8 +76,8 @@ void TestResizeNearestNeighborInt8::Prepare(const std::vector<int> &in_shape, co | |||
| } | |||
| void TestResizeNearestNeighborInt8::TearDown() { | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| // 2*2*1 -> 4*4*1 | |||
| @@ -55,10 +55,10 @@ class TestScaleInt8 : public mindspore::CommonTest { | |||
| }; | |||
| void TestScaleInt8::TearDown() { | |||
| in_tensor_.SetData(nullptr); | |||
| scale_tensor_.SetData(nullptr); | |||
| bias_tensor_.SetData(nullptr); | |||
| out_tensor_.SetData(nullptr); | |||
| in_tensor_.set_data(nullptr); | |||
| scale_tensor_.set_data(nullptr); | |||
| bias_tensor_.set_data(nullptr); | |||
| out_tensor_.set_data(nullptr); | |||
| } | |||
| void TestScaleInt8::Prepare(const std::vector<int> &in_shape, int8_t *input_data, const std::vector<int> &scale_shape, | |||
| @@ -66,11 +66,11 @@ void TestScaleInt8::Prepare(const std::vector<int> &in_shape, int8_t *input_data | |||
| const std::vector<int> &out_shape, int8_t *output_data, int axis, bool has_bias) { | |||
| in_tensor_.set_data_type(kNumberTypeInt8); | |||
| in_tensor_.set_shape(in_shape); | |||
| in_tensor_.SetData(input_data); | |||
| in_tensor_.set_data(input_data); | |||
| in_tensor_.AddQuantParam(quant_in_); | |||
| scale_tensor_.set_data_type(kNumberTypeInt8); | |||
| scale_tensor_.set_shape(scale_shape); | |||
| scale_tensor_.SetData(scale_data); | |||
| scale_tensor_.set_data(scale_data); | |||
| scale_tensor_.AddQuantParam(quant_scale_); | |||
| inputs.clear(); | |||
| @@ -79,14 +79,14 @@ void TestScaleInt8::Prepare(const std::vector<int> &in_shape, int8_t *input_data | |||
| if (has_bias) { | |||
| bias_tensor_.set_data_type(kNumberTypeInt8); | |||
| bias_tensor_.set_shape(bias_shape); | |||
| bias_tensor_.SetData(bias_data); | |||
| bias_tensor_.set_data(bias_data); | |||
| bias_tensor_.AddQuantParam(quant_bias_); | |||
| inputs.emplace_back(&bias_tensor_); | |||
| } | |||
| out_tensor_.set_data_type(kNumberTypeInt8); | |||
| out_tensor_.set_shape(out_shape); | |||
| out_tensor_.SetData(output_data); | |||
| out_tensor_.set_data(output_data); | |||
| out_tensor_.AddQuantParam(quant_out_); | |||
| param_.axis_ = axis; | |||
| @@ -33,8 +33,8 @@ TEST_F(TestSigmoidInt8, Sigmoid) { | |||
| int8_t input_data[] = {0, 0, 0, 0, 1, 1, 1, 1}; // -3.5f, -3.0f, -2.5f, 0.f, 2.5f, 3.0f, 3.5f, 6.0f | |||
| int8_t output_data[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in = {1.0, 0}; // -4.0 -- 7.0 | |||
| const lite::QuantArg quant_out = {1.0, 0}; // -3.0 -- 7.0 | |||
| @@ -66,7 +66,7 @@ TEST_F(TestSigmoidInt8, Sigmoid) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -34,8 +34,8 @@ TEST_F(TestSliceInt8, SliceInt8) { | |||
| int8_t input_data[] = {105, 35, -27, 0, -63, 99, 16, 45, 67, -49, -115, 106, -98, 119, 103, 81, -114, 68}; | |||
| int8_t output_data[12]; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 | |||
| const lite::QuantArg quant_out = {0.00784314f, 0}; | |||
| @@ -71,7 +71,7 @@ TEST_F(TestSliceInt8, SliceInt8) { | |||
| EXPECT_EQ(output_data[i], expect0[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -56,7 +56,7 @@ TEST_F(TestSoftmaxInt8, SoftmaxInt8) { | |||
| lite::Tensor input0_tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| inputs_tensor.push_back(&input0_tensor); | |||
| input0_tensor.SetData(input.data()); | |||
| input0_tensor.set_data(input.data()); | |||
| input0_tensor.set_shape(in_shape); | |||
| input0_tensor.AddQuantParam(input_quant_arg); | |||
| input0_tensor.set_data_type(tid_int8); | |||
| @@ -66,7 +66,7 @@ TEST_F(TestSoftmaxInt8, SoftmaxInt8) { | |||
| lite::Tensor output0_tensor; | |||
| outputs_tensor.push_back(&output0_tensor); | |||
| output0_tensor.SetData(output.data()); | |||
| output0_tensor.set_data(output.data()); | |||
| output0_tensor.AddQuantParam(output_quant_arg); | |||
| output0_tensor.set_data_type(tid_int8); | |||
| @@ -86,8 +86,8 @@ TEST_F(TestSoftmaxInt8, SoftmaxInt8) { | |||
| -127, -127, -127, -127, -59, -59, -61, -59, 58, 58, 59, 58}; | |||
| CompareOutputData(output.data(), except_result.data(), input.size(), 0.000001); | |||
| input0_tensor.SetData(nullptr); | |||
| output0_tensor.SetData(nullptr); | |||
| input0_tensor.set_data(nullptr); | |||
| output0_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -29,8 +29,8 @@ TEST_F(SpaceToBatchTestInt8, test1) { | |||
| lite::Tensor out_tensor(kNumberTypeInt8, {4, 2, 2, 1}); | |||
| int8_t input_data[] = {1, 2, 3, 4}; | |||
| int8_t output_data[16] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor.set_data(output_data); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor}; | |||
| @@ -52,7 +52,7 @@ TEST_F(SpaceToBatchTestInt8, test1) { | |||
| for (int i = 0; i < 8; ++i) { | |||
| EXPECT_EQ(output_data[i], expect[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -52,7 +52,7 @@ TEST_F(TestSplitInt8, Split_quant0_thread2) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -60,12 +60,12 @@ TEST_F(TestSplitInt8, Split_quant0_thread2) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output1_tensor = new lite::Tensor; | |||
| output1_tensor->SetData(output1); | |||
| output1_tensor->set_data(output1); | |||
| output1_tensor->set_shape(output1_shape); | |||
| output1_tensor->AddQuantParam(output_quant_arg); | |||
| output1_tensor->set_data_type(tid_int8); | |||
| lite::Tensor *output2_tensor = new lite::Tensor; | |||
| output2_tensor->SetData(output2); | |||
| output2_tensor->set_data(output2); | |||
| output2_tensor->set_shape(output2_shape); | |||
| output2_tensor->AddQuantParam(output_quant_arg); | |||
| output2_tensor->set_data_type(tid_int8); | |||
| @@ -103,9 +103,9 @@ TEST_F(TestSplitInt8, Split_quant0_thread2) { | |||
| CompareOutputData(output1, except_result1.data(), output1_size, 0.000001); | |||
| CompareOutputData(output2, except_result2.data(), output2_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output1_tensor->SetData(nullptr); | |||
| output2_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output1_tensor->set_data(nullptr); | |||
| output2_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output1_tensor; | |||
| delete output2_tensor; | |||
| @@ -137,7 +137,7 @@ TEST_F(TestSplitInt8, Split_quant0_thread2_num) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -145,17 +145,17 @@ TEST_F(TestSplitInt8, Split_quant0_thread2_num) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output1_tensor = new lite::Tensor; | |||
| output1_tensor->SetData(output1); | |||
| output1_tensor->set_data(output1); | |||
| output1_tensor->set_shape(output1_shape); | |||
| output1_tensor->AddQuantParam(output_quant_arg); | |||
| output1_tensor->set_data_type(tid_int8); | |||
| lite::Tensor *output2_tensor = new lite::Tensor; | |||
| output2_tensor->SetData(output2); | |||
| output2_tensor->set_data(output2); | |||
| output2_tensor->set_shape(output2_shape); | |||
| output2_tensor->AddQuantParam(output_quant_arg); | |||
| output2_tensor->set_data_type(tid_int8); | |||
| lite::Tensor *output3_tensor = new lite::Tensor; | |||
| output3_tensor->SetData(output3); | |||
| output3_tensor->set_data(output3); | |||
| output3_tensor->set_shape(output3_shape); | |||
| output3_tensor->AddQuantParam(output_quant_arg); | |||
| output3_tensor->set_data_type(tid_int8); | |||
| @@ -198,10 +198,10 @@ TEST_F(TestSplitInt8, Split_quant0_thread2_num) { | |||
| CompareOutputData(output2, except_result2.data(), output2_size, 0.000001); | |||
| CompareOutputData(output3, except_result3.data(), output3_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output1_tensor->SetData(nullptr); | |||
| output2_tensor->SetData(nullptr); | |||
| output3_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output1_tensor->set_data(nullptr); | |||
| output2_tensor->set_data(nullptr); | |||
| output3_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output1_tensor; | |||
| delete output2_tensor; | |||
| @@ -234,7 +234,7 @@ TEST_F(TestSplitInt8, Split_quant1_thread2_num) { | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -242,17 +242,17 @@ TEST_F(TestSplitInt8, Split_quant1_thread2_num) { | |||
| inputs_tensor[0] = input_tensor1; | |||
| lite::Tensor *output1_tensor = new lite::Tensor; | |||
| output1_tensor->SetData(output1); | |||
| output1_tensor->set_data(output1); | |||
| output1_tensor->set_shape(output1_shape); | |||
| output1_tensor->AddQuantParam(output_quant_arg); | |||
| output1_tensor->set_data_type(tid_int8); | |||
| lite::Tensor *output2_tensor = new lite::Tensor; | |||
| output2_tensor->SetData(output2); | |||
| output2_tensor->set_data(output2); | |||
| output2_tensor->set_shape(output2_shape); | |||
| output2_tensor->AddQuantParam(output_quant_arg); | |||
| output2_tensor->set_data_type(tid_int8); | |||
| lite::Tensor *output3_tensor = new lite::Tensor; | |||
| output3_tensor->SetData(output3); | |||
| output3_tensor->set_data(output3); | |||
| output3_tensor->set_shape(output3_shape); | |||
| output3_tensor->AddQuantParam(output_quant_arg); | |||
| output3_tensor->set_data_type(tid_int8); | |||
| @@ -295,10 +295,10 @@ TEST_F(TestSplitInt8, Split_quant1_thread2_num) { | |||
| CompareOutputData(output2, except_result2.data(), output2_size, 0.000001); | |||
| CompareOutputData(output3, except_result3.data(), output3_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output1_tensor->SetData(nullptr); | |||
| output2_tensor->SetData(nullptr); | |||
| output3_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output1_tensor->set_data(nullptr); | |||
| output2_tensor->set_data(nullptr); | |||
| output3_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output1_tensor; | |||
| delete output2_tensor; | |||
| @@ -48,7 +48,7 @@ TEST_F(TestSqueezeInt8, Squeeze_1d_axis0_offset0_quant0_thread2) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -58,7 +58,7 @@ TEST_F(TestSqueezeInt8, Squeeze_1d_axis0_offset0_quant0_thread2) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -87,8 +87,8 @@ TEST_F(TestSqueezeInt8, Squeeze_1d_axis0_offset0_quant0_thread2) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -36,9 +36,9 @@ TEST_F(TestSubInt8, SubInt8) { | |||
| int8_t input_data0[] = {105, 35, -27, 0, -63, 99, 16, 122, 67, -49}; | |||
| int8_t input_data1[] = {24, -38, -115, 106, -98}; | |||
| int8_t output_data[10] = {0}; | |||
| in_tensor0.SetData(input_data0); | |||
| in_tensor1.SetData(input_data1); | |||
| out_tensor.SetData(output_data); | |||
| in_tensor0.set_data(input_data0); | |||
| in_tensor1.set_data(input_data1); | |||
| out_tensor.set_data(output_data); | |||
| const lite::QuantArg quant_in0 = {0.00784314f, 0}; // -1.0--1.0 -> 0--255 | |||
| const lite::QuantArg quant_in1 = {0.00784314f, 0}; | |||
| @@ -69,8 +69,8 @@ TEST_F(TestSubInt8, SubInt8) { | |||
| EXPECT_EQ(output_data[i], expect0[i]); | |||
| } | |||
| in_tensor0.SetData(nullptr); | |||
| in_tensor1.SetData(nullptr); | |||
| out_tensor.SetData(nullptr); | |||
| in_tensor0.set_data(nullptr); | |||
| in_tensor1.set_data(nullptr); | |||
| out_tensor.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -34,9 +34,9 @@ TEST_F(TestTopKInt8, TopK) { | |||
| int8_t input_data[] = {1, 2, 3, 6, 5, 4, 9, 8, 7, 10, 12, 11}; | |||
| int8_t output_data0[8] = {0}; | |||
| int32_t output_data1[8] = {0}; | |||
| in_tensor.SetData(input_data); | |||
| out_tensor0.SetData(output_data0); | |||
| out_tensor1.SetData(output_data1); | |||
| in_tensor.set_data(input_data); | |||
| out_tensor0.set_data(output_data0); | |||
| out_tensor1.set_data(output_data1); | |||
| std::vector<lite::Tensor *> inputs = {&in_tensor}; | |||
| std::vector<lite::Tensor *> outputs = {&out_tensor0, &out_tensor1}; | |||
| @@ -59,8 +59,8 @@ TEST_F(TestTopKInt8, TopK) { | |||
| EXPECT_EQ(output_data1[i], expect1[i]); | |||
| } | |||
| in_tensor.SetData(nullptr); | |||
| out_tensor0.SetData(nullptr); | |||
| out_tensor1.SetData(nullptr); | |||
| in_tensor.set_data(nullptr); | |||
| out_tensor0.set_data(nullptr); | |||
| out_tensor1.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -47,7 +47,7 @@ TEST_F(TestUnsqueezeInt8, Unsqueeze_1) { | |||
| lite::Tensor *input_tensor1 = new lite::Tensor; | |||
| TypeId tid_int8 = kNumberTypeInt8; | |||
| input_tensor1->SetData(input1.data()); | |||
| input_tensor1->set_data(input1.data()); | |||
| input_tensor1->set_shape(shape1); | |||
| input_tensor1->AddQuantParam(input_quant_arg); | |||
| input_tensor1->set_data_type(tid_int8); | |||
| @@ -57,7 +57,7 @@ TEST_F(TestUnsqueezeInt8, Unsqueeze_1) { | |||
| std::vector<lite::Tensor *> outputs_tensor(1); | |||
| lite::Tensor *output0_tensor = new lite::Tensor; | |||
| output0_tensor->SetData(output); | |||
| output0_tensor->set_data(output); | |||
| output0_tensor->set_shape(output_shape); | |||
| output0_tensor->AddQuantParam(output_quant_arg); | |||
| output0_tensor->set_data_type(tid_int8); | |||
| @@ -86,8 +86,8 @@ TEST_F(TestUnsqueezeInt8, Unsqueeze_1) { | |||
| PrintData("output data shape", output_tensor_shape.data(), output_tensor_shape.size()); | |||
| CompareOutputData(output, except_result.data(), output_size, 0.000001); | |||
| input_tensor1->SetData(nullptr); | |||
| output0_tensor->SetData(nullptr); | |||
| input_tensor1->set_data(nullptr); | |||
| output0_tensor->set_data(nullptr); | |||
| delete input_tensor1; | |||
| delete output0_tensor; | |||
| delete ctx; | |||
| @@ -80,8 +80,8 @@ TEST_F(TestNormalize, TestSentence) { | |||
| printf("\n"); | |||
| } | |||
| input_tensor_.SetData(nullptr); | |||
| output_tensor_.SetData(nullptr); | |||
| input_tensor_.set_data(nullptr); | |||
| output_tensor_.set_data(nullptr); | |||
| } | |||
| } // namespace mindspore | |||
| @@ -92,7 +92,7 @@ TEST_F(TestActivationOpenCL, ReluFp_dim4) { | |||
| std::vector<int> input_shape = {1, 9}; | |||
| schema::Format format = schema::Format_NC; | |||
| schema::Format op_format = schema::Format_NC4; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto tensor_type = lite::Tensor::CONST_TENSOR; | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new input tensor error!"; | |||
| @@ -199,7 +199,7 @@ TEST_F(TestActivationOpenCL, Relu6Fp_dim4) { | |||
| std::vector<int> input_shape = {1, 9}; | |||
| schema::Format format = schema::Format_NC; | |||
| schema::Format op_format = schema::Format_NC4; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto tensor_type = lite::Tensor::CONST_TENSOR; | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new input tensor error!"; | |||
| @@ -309,7 +309,7 @@ TEST_F(TestActivationOpenCL, SigmoidFp_dim4) { | |||
| std::vector<int> input_shape = {1, 9}; | |||
| schema::Format format = schema::Format_NC; | |||
| schema::Format op_format = schema::Format_NC4; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto tensor_type = lite::Tensor::CONST_TENSOR; | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new input tensor error!"; | |||
| @@ -417,7 +417,7 @@ TEST_F(TestActivationOpenCL, LeakyReluFp_dim4) { | |||
| MS_LOG(INFO) << "Init tensors."; | |||
| std::vector<int> input_shape = {1, 9}; // need modify | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto tensor_type = lite::Tensor::CONST_TENSOR; | |||
| schema::Format format = schema::Format_NC; // need modify | |||
| schema::Format op_format = schema::Format_NHWC4; // need modify | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type); | |||
| @@ -528,7 +528,7 @@ TEST_F(TestActivationOpenCLTanh, TanhFp_dim4) { | |||
| std::vector<int> input_shape = {1, 2, 3, 9}; | |||
| schema::Format format = schema::Format_NHWC; | |||
| schema::Format op_format = schema::Format_NC4HW4; | |||
| auto tensor_type = lite::TensorCategory(schema::NodeType_ValueNode); | |||
| auto tensor_type = lite::Tensor::CONST_TENSOR; | |||
| auto *input_tensor = new (std::nothrow) lite::Tensor(data_type, input_shape, format, tensor_type); | |||
| if (input_tensor == nullptr) { | |||
| MS_LOG(ERROR) << "new input tensor error!"; | |||
| @@ -618,9 +618,9 @@ TEST_F(TestActivationOpenCLTanh, TanhFp_dim4) { | |||
| printf_tensor<float>("Tanh:FP32--output data---", outputs[0]); | |||
| CompareRes<float>(output_tensor, out_file); | |||
| } | |||
| input_tensor->SetData(nullptr); | |||
| input_tensor->set_data(nullptr); | |||
| delete input_tensor; | |||
| output_tensor->SetData(nullptr); | |||
| output_tensor->set_data(nullptr); | |||
| delete output_tensor; | |||
| delete sub_graph; | |||
| } | |||