Browse Source

applying comments removing VOC

tags/v0.6.0-beta
avakh 5 years ago
parent
commit
1e869146e9
4 changed files with 225 additions and 426 deletions
  1. BIN
      tests/ut/data/dataset/golden/random_resize_with_bbox_op_01_c_result.npz
  2. BIN
      tests/ut/data/dataset/golden/resize_with_bbox_op_01_c_result.npz
  3. +126
    -197
      tests/ut/python/dataset/test_random_resize_with_bbox.py
  4. +99
    -229
      tests/ut/python/dataset/test_resize_with_bbox.py

BIN
tests/ut/data/dataset/golden/random_resize_with_bbox_op_01_c_result.npz View File


BIN
tests/ut/data/dataset/golden/resize_with_bbox_op_01_c_result.npz View File


+ 126
- 197
tests/ut/python/dataset/test_random_resize_with_bbox.py View File

@@ -15,251 +15,180 @@
""" """
Testing the random resize with bounding boxes op in DE Testing the random resize with bounding boxes op in DE
""" """
from enum import Enum
import matplotlib.pyplot as plt
import matplotlib.patches as patches
import numpy as np import numpy as np
import mindspore.dataset as ds import mindspore.dataset as ds
from mindspore import log as logger
import mindspore.dataset.transforms.vision.c_transforms as c_vision import mindspore.dataset.transforms.vision.c_transforms as c_vision


from mindspore import log as logger
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5


GENERATE_GOLDEN = False GENERATE_GOLDEN = False


DATA_DIR = "../data/dataset/testVOC2012"
DATA_DIR = "../data/dataset/testVOC2012_2"




def fix_annotate(bboxes): def fix_annotate(bboxes):
""" """
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format :param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format :return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
""" """
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
for (i, box) in enumerate(bboxes):
bboxes[i] = np.roll(box, -1)
return bboxes return bboxes




class BoxType(Enum):
def test_random_resize_with_bbox_op_rand_c(plot_vis=False):
""" """
Defines box types for test cases
Prints images and bboxes side by side with and without RandomResizeWithBBox Op applied,
tests with MD5 check, expected to pass
""" """
WidthOverflow = 1
HeightOverflow = 2
NegativeXY = 3
OnEdge = 4
WrongShape = 5
logger.info("test_random_resize_with_bbox_rand_c")
original_seed = config_get_set_seed(1)
original_num_parallel_workers = config_get_set_num_parallel_workers(1)


# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


class AddBadAnnotation: # pylint: disable=too-few-public-methods
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
"""
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


def __init__(self, box_type):
self.box_type = box_type

def __call__(self, img, bboxes):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if self.box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width - 1, height + 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes


def check_bad_box(data, box_type, expected_error):
try:
test_op = c_vision.RandomResizeWithBBox(100) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to use width overflow
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
for _, _ in enumerate(data.create_dict_iterator()):
break
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert expected_error in str(e)


def add_bounding_boxes(axis, bboxes):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for bbox in bboxes:
rect = patches.Rectangle((bbox[0], bbox[1]),
bbox[2], bbox[3],
linewidth=1, edgecolor='r', facecolor='none')
# Add the patch to the Axes
axis.add_patch(rect)


def visualize(unaugmented_data, augment_data):
for idx, (un_aug_item, aug_item) in \
enumerate(zip(unaugmented_data.create_dict_iterator(), augment_data.create_dict_iterator())):
axis = plt.subplot(141)
plt.imshow(un_aug_item["image"])
add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes
plt.title("Original" + str(idx + 1))
logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"])

axis = plt.subplot(142)
plt.imshow(aug_item["image"])
add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes
plt.title("Augmented" + str(idx + 1))
logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n")
plt.show()


def test_random_resize_with_bbox_op(plot=False):
test_op = c_vision.RandomResizeWithBBox(200)

dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])

filename = "random_resize_with_bbox_op_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)

unaugSamp, augSamp = [], []

for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)

if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)

# Restore config setting
ds.config.set_seed(original_seed)
ds.config.set_num_parallel_workers(original_num_parallel_workers)


def test_random_resize_with_bbox_op_edge_c(plot_vis=False):
""" """
Test random_resize_with_bbox_op
Prints images and bboxes side by side with and without RandomresizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
""" """
logger.info("Test random resize with bbox")
logger.info("test_random_resize_with_bbox_op_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


# original images
data_original = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


# augmented images
data_augmented = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
test_op = c_vision.RandomResizeWithBBox(500)


data_original = data_original.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)


data_augmented = data_augmented.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])


# define map operations
test_op = c_vision.RandomResizeWithBBox(100) # input value being the target size of resizeOp
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])


data_augmented = data_augmented.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"], operations=[test_op])
if plot:
visualize(data_original, data_augmented)
unaugSamp, augSamp = [], []


for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)


def test_random_resize_with_bbox_invalid_bounds():
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WrongShape, "4 features")
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)




def test_random_resize_with_bbox_invalid_size():
def test_random_resize_with_bbox_op_invalid_c():
"""
Test RandomResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
""" """
Test random_resize_with_bbox_op
"""
logger.info("Test random resize with bbox with invalid target size")
logger.info("test_random_resize_with_bbox_op_invalid_c")


# original images
data = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
try:
# zero value for resize
c_vision.RandomResizeWithBBox(0)


data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)


# negative target size as input
try: try:
test_op = c_vision.RandomResizeWithBBox(-10) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# one of the size values is zero
c_vision.RandomResizeWithBBox((0, 100))


# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)


for _, _ in enumerate(data.create_dict_iterator()):
break
try:
# negative value for resize
c_vision.RandomResizeWithBBox(-10)


except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
print(e)
assert "Input is not" in str(e)
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Input is not" in str(err)


# zero target size as input
try: try:
test_op = c_vision.RandomResizeWithBBox(0) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)
# invalid input shape
c_vision.RandomResizeWithBBox((100, 100, 100))


# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except TypeError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "Size should be" in str(err)


for _, _ in enumerate(data.create_dict_iterator()):
break


except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input is not" in str(e)

# invalid input shape
try:
test_op = c_vision.RandomResizeWithBBox((10, 10, 10)) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM)

# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
def test_random_resize_with_bbox_op_bad_c():
"""
Tests RandomResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger.info("test_random_resize_with_bbox_op_bad_c")
test_op = c_vision.RandomResizeWithBBox((400, 300))


for _, _ in enumerate(data.create_dict_iterator()):
break
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")


except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Size should be" in str(e)


if __name__ == "__main__": if __name__ == "__main__":
test_random_resize_with_bbox_op(plot=False)
test_random_resize_with_bbox_invalid_bounds()
test_random_resize_with_bbox_invalid_size()
test_random_resize_with_bbox_op_rand_c(plot_vis=False)
test_random_resize_with_bbox_op_edge_c(plot_vis=False)
test_random_resize_with_bbox_op_invalid_c()
test_random_resize_with_bbox_op_bad_c()

+ 99
- 229
tests/ut/python/dataset/test_resize_with_bbox.py View File

@@ -15,281 +15,151 @@
""" """
Testing the resize with bounding boxes op in DE Testing the resize with bounding boxes op in DE
""" """
from enum import Enum
import numpy as np import numpy as np
import matplotlib.patches as patches
import matplotlib.pyplot as plt
import mindspore.dataset as ds
import mindspore.dataset.transforms.vision.c_transforms as c_vision import mindspore.dataset.transforms.vision.c_transforms as c_vision

from mindspore import log as logger from mindspore import log as logger
import mindspore.dataset as ds
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \
save_and_check_md5


GENERATE_GOLDEN = False GENERATE_GOLDEN = False


DATA_DIR = "../data/dataset/testVOC2012"
DATA_DIR = "../data/dataset/testVOC2012_2"




def fix_annotate(bboxes): def fix_annotate(bboxes):
""" """
Fix annotations to format followed by mindspore.
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format :param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format :return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format
""" """
for bbox in bboxes:
tmp = bbox[0]
bbox[0] = bbox[1]
bbox[1] = bbox[2]
bbox[2] = bbox[3]
bbox[3] = bbox[4]
bbox[4] = tmp
for (i, box) in enumerate(bboxes):
bboxes[i] = np.roll(box, -1)
return bboxes return bboxes




class BoxType(Enum):
def test_resize_with_bbox_op_c(plot_vis=False):
""" """
Defines box types for test cases
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
tests with MD5 check, expected to pass
""" """
WidthOverflow = 1
HeightOverflow = 2
NegativeXY = 3
OnEdge = 4
WrongShape = 5
logger.info("test_resize_with_bbox_op_c")


# Load dataset
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


class AddBadAnnotation: # pylint: disable=too-few-public-methods
"""
Used to add erroneous bounding boxes to object detection pipelines.
Usage:
>>> # Adds a box that covers the whole image. Good for testing edge cases
>>> de = de.map(input_columns=["image", "annotation"],
>>> output_columns=["image", "annotation"],
>>> operations=AddBadAnnotation(BoxType.OnEdge))
"""
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


def __init__(self, box_type):
self.box_type = box_type

def __call__(self, img, bboxes):
"""
Used to generate erroneous bounding box examples on given img.
:param img: image where the bounding boxes are.
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format
:return: bboxes with bad examples added
"""
height = img.shape[0]
width = img.shape[1]
if self.box_type == BoxType.WidthOverflow:
# use box that overflows on width
return img, np.array([[0, 0, width + 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.HeightOverflow:
# use box that overflows on height
return img, np.array([[0, 0, width - 1, height + 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.NegativeXY:
# use box with negative xy
return img, np.array([[-10, -10, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.OnEdge:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32)

if self.box_type == BoxType.WrongShape:
# use box that covers the whole image
return img, np.array([[0, 0, width - 1]]).astype(np.uint32)
return img, bboxes


def check_bad_box(data, box_type, expected_error):
try:
test_op = c_vision.ResizeWithBBox(100)
data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to use width overflow
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=AddBadAnnotation(box_type)) # Add column for "annotation"
# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
for _, _ in enumerate(data.create_dict_iterator()):
break
except RuntimeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert expected_error in str(e)


def add_bounding_boxes(axis, bboxes):
"""
:param axis: axis to modify
:param bboxes: bounding boxes to draw on the axis
:return: None
"""
for bbox in bboxes:
rect = patches.Rectangle((bbox[0], bbox[1]),
bbox[2], bbox[3],
linewidth=1, edgecolor='r', facecolor='none')
# Add the patch to the Axes
axis.add_patch(rect)


def visualize(unaugmented_data, augment_data):
for idx, (un_aug_item, aug_item) in enumerate(
zip(unaugmented_data.create_dict_iterator(), augment_data.create_dict_iterator())):
axis = plt.subplot(141)
plt.imshow(un_aug_item["image"])
add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes
plt.title("Original" + str(idx + 1))
logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"])

axis = plt.subplot(142)
plt.imshow(aug_item["image"])
add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes
plt.title("Augmented" + str(idx + 1))
logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n")
plt.show()


def test_resize_with_bbox_op(plot=False):
"""
Test resize_with_bbox_op
"""
logger.info("Test resize with bbox")

# original images
data_original = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)

# augmented images
data_augmented = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)

data_original = data_original.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
test_op = c_vision.ResizeWithBBox(200)


data_augmented = data_augmented.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
# map to apply ops
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op])


# define map operations
test_op = c_vision.ResizeWithBBox(100) # input value being the target size of resizeOp
filename = "resize_with_bbox_op_01_c_result.npz"
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN)


data_augmented = data_augmented.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"], operations=[test_op])
if plot:
visualize(data_original, data_augmented)
unaugSamp, augSamp = [], []


for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)


def test_resize_with_bbox_invalid_bounds():
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_box(data_voc2, BoxType.WrongShape, "4 features")
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)




def test_resize_with_bbox_invalid_size():
def test_resize_with_bbox_op_edge_c(plot_vis=False):
""" """
Test resize_with_bbox_op
"""
logger.info("Test resize with bbox with invalid target size")
Prints images and bboxes side by side with and without ResizeWithBBox Op applied,
applied on dynamically generated edge case, expected to pass. edge case is when bounding
box has dimensions as the image itself.
"""
logger.info("test_resize_with_bbox_op_edge_c")
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


# original images
data = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train",
decode=True, shuffle=False)


data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
test_op = c_vision.ResizeWithBBox(500)


# negative target size as input
try:
test_op = c_vision.ResizeWithBBox(-10)
dataVoc1 = dataVoc1.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)
dataVoc2 = dataVoc2.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)


# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
# maps to convert data into valid edge case data
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))])


for _, _ in enumerate(data.create_dict_iterator()):
break
# Test Op added to list of Operations here
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[lambda img, bboxes: (
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op])


except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input is not" in str(e)
unaugSamp, augSamp = [], []


# zero target size as input
try:
test_op = c_vision.ResizeWithBBox(0)
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()):
unaugSamp.append(unAug)
augSamp.append(Aug)


# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
if plot_vis:
visualize_with_bounding_boxes(unaugSamp, augSamp)


for _, _ in enumerate(data.create_dict_iterator()):
break


except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Input is not" in str(e)
def test_resize_with_bbox_op_invalid_c():
"""
Test ResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError
"""
logger.info("test_resize_with_bbox_op_invalid_c")


# invalid input shape
try: try:
test_op = c_vision.ResizeWithBBox((10, 10, 10))
# invalid interpolation value
c_vision.ResizeWithBBox(400, interpolation="invalid")


# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
except ValueError as err:
logger.info("Got an exception in DE: {}".format(str(err)))
assert "interpolation" in str(err)


for _, _ in enumerate(data.create_dict_iterator()):
break


except TypeError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "Size should be" in str(e)


def test_resize_with_bbox_invalid_interpolation():
def test_resize_with_bbox_op_bad_c():
""" """
Test resize_with_bbox_op
"""
logger.info("Test resize with bbox with invalid interpolation size")

# original images
data = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)

data = data.map(input_columns=["annotation"],
output_columns=["annotation"],
operations=fix_annotate)

# invalid interpolation
try:
test_op = c_vision.ResizeWithBBox(100, interpolation="invalid")

# map to apply ops
data = data.map(input_columns=["image", "annotation"],
output_columns=["image", "annotation"],
columns_order=["image", "annotation"],
operations=[test_op]) # Add column for "annotation"
Tests ResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors
"""
logger.info("test_resize_with_bbox_op_bad_c")
test_op = c_vision.ResizeWithBBox((200, 300))


for _, _ in enumerate(data.create_dict_iterator()):
break
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x")
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False)
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features")


except ValueError as e:
logger.info("Got an exception in DE: {}".format(str(e)))
assert "interpolation" in str(e)


if __name__ == "__main__": if __name__ == "__main__":
test_resize_with_bbox_op(plot=False)
test_resize_with_bbox_invalid_bounds()
test_resize_with_bbox_invalid_size()
test_resize_with_bbox_invalid_interpolation()
test_resize_with_bbox_op_c(plot_vis=False)
test_resize_with_bbox_op_edge_c(plot_vis=False)
test_resize_with_bbox_op_invalid_c()
test_resize_with_bbox_op_bad_c()

Loading…
Cancel
Save