|
|
@@ -15,251 +15,180 @@ |
|
|
""" |
|
|
""" |
|
|
Testing the random resize with bounding boxes op in DE |
|
|
Testing the random resize with bounding boxes op in DE |
|
|
""" |
|
|
""" |
|
|
from enum import Enum |
|
|
|
|
|
import matplotlib.pyplot as plt |
|
|
|
|
|
import matplotlib.patches as patches |
|
|
|
|
|
import numpy as np |
|
|
import numpy as np |
|
|
import mindspore.dataset as ds |
|
|
import mindspore.dataset as ds |
|
|
from mindspore import log as logger |
|
|
|
|
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision |
|
|
import mindspore.dataset.transforms.vision.c_transforms as c_vision |
|
|
|
|
|
|
|
|
|
|
|
from mindspore import log as logger |
|
|
|
|
|
from util import visualize_with_bounding_boxes, InvalidBBoxType, check_bad_bbox, \ |
|
|
|
|
|
config_get_set_seed, config_get_set_num_parallel_workers, save_and_check_md5 |
|
|
|
|
|
|
|
|
GENERATE_GOLDEN = False |
|
|
GENERATE_GOLDEN = False |
|
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testVOC2012" |
|
|
|
|
|
|
|
|
DATA_DIR = "../data/dataset/testVOC2012_2" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fix_annotate(bboxes): |
|
|
def fix_annotate(bboxes): |
|
|
""" |
|
|
""" |
|
|
|
|
|
Fix annotations to format followed by mindspore. |
|
|
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format |
|
|
:param bboxes: in [label, x_min, y_min, w, h, truncate, difficult] format |
|
|
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format |
|
|
:return: annotation in [x_min, y_min, w, h, label, truncate, difficult] format |
|
|
""" |
|
|
""" |
|
|
for bbox in bboxes: |
|
|
|
|
|
tmp = bbox[0] |
|
|
|
|
|
bbox[0] = bbox[1] |
|
|
|
|
|
bbox[1] = bbox[2] |
|
|
|
|
|
bbox[2] = bbox[3] |
|
|
|
|
|
bbox[3] = bbox[4] |
|
|
|
|
|
bbox[4] = tmp |
|
|
|
|
|
|
|
|
for (i, box) in enumerate(bboxes): |
|
|
|
|
|
bboxes[i] = np.roll(box, -1) |
|
|
return bboxes |
|
|
return bboxes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BoxType(Enum): |
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_op_rand_c(plot_vis=False): |
|
|
""" |
|
|
""" |
|
|
Defines box types for test cases |
|
|
|
|
|
|
|
|
Prints images and bboxes side by side with and without RandomResizeWithBBox Op applied, |
|
|
|
|
|
tests with MD5 check, expected to pass |
|
|
""" |
|
|
""" |
|
|
WidthOverflow = 1 |
|
|
|
|
|
HeightOverflow = 2 |
|
|
|
|
|
NegativeXY = 3 |
|
|
|
|
|
OnEdge = 4 |
|
|
|
|
|
WrongShape = 5 |
|
|
|
|
|
|
|
|
logger.info("test_random_resize_with_bbox_rand_c") |
|
|
|
|
|
original_seed = config_get_set_seed(1) |
|
|
|
|
|
original_num_parallel_workers = config_get_set_num_parallel_workers(1) |
|
|
|
|
|
|
|
|
|
|
|
# Load dataset |
|
|
|
|
|
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", |
|
|
|
|
|
decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
class AddBadAnnotation: # pylint: disable=too-few-public-methods |
|
|
|
|
|
""" |
|
|
|
|
|
Used to add erroneous bounding boxes to object detection pipelines. |
|
|
|
|
|
Usage: |
|
|
|
|
|
>>> # Adds a box that covers the whole image. Good for testing edge cases |
|
|
|
|
|
>>> de = de.map(input_columns=["image", "annotation"], |
|
|
|
|
|
>>> output_columns=["image", "annotation"], |
|
|
|
|
|
>>> operations=AddBadAnnotation(BoxType.OnEdge)) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", |
|
|
|
|
|
decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
def __init__(self, box_type): |
|
|
|
|
|
self.box_type = box_type |
|
|
|
|
|
|
|
|
|
|
|
def __call__(self, img, bboxes): |
|
|
|
|
|
""" |
|
|
|
|
|
Used to generate erroneous bounding box examples on given img. |
|
|
|
|
|
:param img: image where the bounding boxes are. |
|
|
|
|
|
:param bboxes: in [x_min, y_min, w, h, label, truncate, difficult] format |
|
|
|
|
|
:return: bboxes with bad examples added |
|
|
|
|
|
""" |
|
|
|
|
|
height = img.shape[0] |
|
|
|
|
|
width = img.shape[1] |
|
|
|
|
|
if self.box_type == BoxType.WidthOverflow: |
|
|
|
|
|
# use box that overflows on width |
|
|
|
|
|
return img, np.array([[0, 0, width + 1, height - 1, 0, 0, 0]]).astype(np.uint32) |
|
|
|
|
|
|
|
|
|
|
|
if self.box_type == BoxType.HeightOverflow: |
|
|
|
|
|
# use box that overflows on height |
|
|
|
|
|
return img, np.array([[0, 0, width - 1, height + 1, 0, 0, 0]]).astype(np.uint32) |
|
|
|
|
|
|
|
|
|
|
|
if self.box_type == BoxType.NegativeXY: |
|
|
|
|
|
# use box with negative xy |
|
|
|
|
|
return img, np.array([[-10, -10, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32) |
|
|
|
|
|
|
|
|
|
|
|
if self.box_type == BoxType.OnEdge: |
|
|
|
|
|
# use box that covers the whole image |
|
|
|
|
|
return img, np.array([[0, 0, width - 1, height - 1, 0, 0, 0]]).astype(np.uint32) |
|
|
|
|
|
|
|
|
|
|
|
if self.box_type == BoxType.WrongShape: |
|
|
|
|
|
# use box that covers the whole image |
|
|
|
|
|
return img, np.array([[0, 0, width - 1]]).astype(np.uint32) |
|
|
|
|
|
return img, bboxes |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def check_bad_box(data, box_type, expected_error): |
|
|
|
|
|
try: |
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox(100) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) |
|
|
|
|
|
data = data.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
# map to use width overflow |
|
|
|
|
|
data = data.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=AddBadAnnotation(box_type)) # Add column for "annotation" |
|
|
|
|
|
# map to apply ops |
|
|
|
|
|
data = data.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[test_op]) # Add column for "annotation" |
|
|
|
|
|
for _, _ in enumerate(data.create_dict_iterator()): |
|
|
|
|
|
break |
|
|
|
|
|
except RuntimeError as e: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(e))) |
|
|
|
|
|
assert expected_error in str(e) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def add_bounding_boxes(axis, bboxes): |
|
|
|
|
|
""" |
|
|
|
|
|
:param axis: axis to modify |
|
|
|
|
|
:param bboxes: bounding boxes to draw on the axis |
|
|
|
|
|
:return: None |
|
|
|
|
|
""" |
|
|
|
|
|
for bbox in bboxes: |
|
|
|
|
|
rect = patches.Rectangle((bbox[0], bbox[1]), |
|
|
|
|
|
bbox[2], bbox[3], |
|
|
|
|
|
linewidth=1, edgecolor='r', facecolor='none') |
|
|
|
|
|
# Add the patch to the Axes |
|
|
|
|
|
axis.add_patch(rect) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def visualize(unaugmented_data, augment_data): |
|
|
|
|
|
for idx, (un_aug_item, aug_item) in \ |
|
|
|
|
|
enumerate(zip(unaugmented_data.create_dict_iterator(), augment_data.create_dict_iterator())): |
|
|
|
|
|
axis = plt.subplot(141) |
|
|
|
|
|
plt.imshow(un_aug_item["image"]) |
|
|
|
|
|
add_bounding_boxes(axis, un_aug_item["annotation"]) # add Orig BBoxes |
|
|
|
|
|
plt.title("Original" + str(idx + 1)) |
|
|
|
|
|
logger.info("Original ", str(idx + 1), " :", un_aug_item["annotation"]) |
|
|
|
|
|
|
|
|
|
|
|
axis = plt.subplot(142) |
|
|
|
|
|
plt.imshow(aug_item["image"]) |
|
|
|
|
|
add_bounding_boxes(axis, aug_item["annotation"]) # add AugBBoxes |
|
|
|
|
|
plt.title("Augmented" + str(idx + 1)) |
|
|
|
|
|
logger.info("Augmented ", str(idx + 1), " ", aug_item["annotation"], "\n") |
|
|
|
|
|
plt.show() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_op(plot=False): |
|
|
|
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox(200) |
|
|
|
|
|
|
|
|
|
|
|
dataVoc1 = dataVoc1.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
# map to apply ops |
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[test_op]) |
|
|
|
|
|
|
|
|
|
|
|
filename = "random_resize_with_bbox_op_01_c_result.npz" |
|
|
|
|
|
save_and_check_md5(dataVoc2, filename, generate_golden=GENERATE_GOLDEN) |
|
|
|
|
|
|
|
|
|
|
|
unaugSamp, augSamp = [], [] |
|
|
|
|
|
|
|
|
|
|
|
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): |
|
|
|
|
|
unaugSamp.append(unAug) |
|
|
|
|
|
augSamp.append(Aug) |
|
|
|
|
|
|
|
|
|
|
|
if plot_vis: |
|
|
|
|
|
visualize_with_bounding_boxes(unaugSamp, augSamp) |
|
|
|
|
|
|
|
|
|
|
|
# Restore config setting |
|
|
|
|
|
ds.config.set_seed(original_seed) |
|
|
|
|
|
ds.config.set_num_parallel_workers(original_num_parallel_workers) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_op_edge_c(plot_vis=False): |
|
|
""" |
|
|
""" |
|
|
Test random_resize_with_bbox_op |
|
|
|
|
|
|
|
|
Prints images and bboxes side by side with and without RandomresizeWithBBox Op applied, |
|
|
|
|
|
applied on dynamically generated edge case, expected to pass. edge case is when bounding |
|
|
|
|
|
box has dimensions as the image itself. |
|
|
""" |
|
|
""" |
|
|
logger.info("Test random resize with bbox") |
|
|
|
|
|
|
|
|
logger.info("test_random_resize_with_bbox_op_edge_c") |
|
|
|
|
|
dataVoc1 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", |
|
|
|
|
|
decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
# original images |
|
|
|
|
|
data_original = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
dataVoc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", |
|
|
|
|
|
decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
# augmented images |
|
|
|
|
|
data_augmented = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox(500) |
|
|
|
|
|
|
|
|
data_original = data_original.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
|
|
|
dataVoc1 = dataVoc1.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
|
|
|
data_augmented = data_augmented.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
|
|
|
# maps to convert data into valid edge case data |
|
|
|
|
|
dataVoc1 = dataVoc1.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[lambda img, bboxes: ( |
|
|
|
|
|
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype))]) |
|
|
|
|
|
|
|
|
# define map operations |
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox(100) # input value being the target size of resizeOp |
|
|
|
|
|
|
|
|
dataVoc2 = dataVoc2.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[lambda img, bboxes: ( |
|
|
|
|
|
img, np.array([[0, 0, img.shape[1], img.shape[0]]]).astype(bboxes.dtype)), test_op]) |
|
|
|
|
|
|
|
|
data_augmented = data_augmented.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], operations=[test_op]) |
|
|
|
|
|
if plot: |
|
|
|
|
|
visualize(data_original, data_augmented) |
|
|
|
|
|
|
|
|
unaugSamp, augSamp = [], [] |
|
|
|
|
|
|
|
|
|
|
|
for unAug, Aug in zip(dataVoc1.create_dict_iterator(), dataVoc2.create_dict_iterator()): |
|
|
|
|
|
unaugSamp.append(unAug) |
|
|
|
|
|
augSamp.append(Aug) |
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_invalid_bounds(): |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_box(data_voc2, BoxType.WidthOverflow, "bounding boxes is out of bounds of the image") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_box(data_voc2, BoxType.HeightOverflow, "bounding boxes is out of bounds of the image") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_box(data_voc2, BoxType.NegativeXY, "min_x") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_box(data_voc2, BoxType.WrongShape, "4 features") |
|
|
|
|
|
|
|
|
if plot_vis: |
|
|
|
|
|
visualize_with_bounding_boxes(unaugSamp, augSamp) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_invalid_size(): |
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_op_invalid_c(): |
|
|
|
|
|
""" |
|
|
|
|
|
Test RandomResizeWithBBox Op on invalid constructor parameters, expected to raise ValueError |
|
|
""" |
|
|
""" |
|
|
Test random_resize_with_bbox_op |
|
|
|
|
|
""" |
|
|
|
|
|
logger.info("Test random resize with bbox with invalid target size") |
|
|
|
|
|
|
|
|
logger.info("test_random_resize_with_bbox_op_invalid_c") |
|
|
|
|
|
|
|
|
# original images |
|
|
|
|
|
data = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
# zero value for resize |
|
|
|
|
|
c_vision.RandomResizeWithBBox(0) |
|
|
|
|
|
|
|
|
data = data.map(input_columns=["annotation"], |
|
|
|
|
|
output_columns=["annotation"], |
|
|
|
|
|
operations=fix_annotate) |
|
|
|
|
|
|
|
|
except ValueError as err: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(err))) |
|
|
|
|
|
assert "Input is not" in str(err) |
|
|
|
|
|
|
|
|
# negative target size as input |
|
|
|
|
|
try: |
|
|
try: |
|
|
test_op = c_vision.RandomResizeWithBBox(-10) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) |
|
|
|
|
|
|
|
|
# one of the size values is zero |
|
|
|
|
|
c_vision.RandomResizeWithBBox((0, 100)) |
|
|
|
|
|
|
|
|
# map to apply ops |
|
|
|
|
|
data = data.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[test_op]) # Add column for "annotation" |
|
|
|
|
|
|
|
|
except ValueError as err: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(err))) |
|
|
|
|
|
assert "Input is not" in str(err) |
|
|
|
|
|
|
|
|
for _, _ in enumerate(data.create_dict_iterator()): |
|
|
|
|
|
break |
|
|
|
|
|
|
|
|
try: |
|
|
|
|
|
# negative value for resize |
|
|
|
|
|
c_vision.RandomResizeWithBBox(-10) |
|
|
|
|
|
|
|
|
except ValueError as e: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(e))) |
|
|
|
|
|
print(e) |
|
|
|
|
|
assert "Input is not" in str(e) |
|
|
|
|
|
|
|
|
except ValueError as err: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(err))) |
|
|
|
|
|
assert "Input is not" in str(err) |
|
|
|
|
|
|
|
|
# zero target size as input |
|
|
|
|
|
try: |
|
|
try: |
|
|
test_op = c_vision.RandomResizeWithBBox(0) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) |
|
|
|
|
|
|
|
|
# invalid input shape |
|
|
|
|
|
c_vision.RandomResizeWithBBox((100, 100, 100)) |
|
|
|
|
|
|
|
|
# map to apply ops |
|
|
|
|
|
data = data.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[test_op]) # Add column for "annotation" |
|
|
|
|
|
|
|
|
except TypeError as err: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(err))) |
|
|
|
|
|
assert "Size should be" in str(err) |
|
|
|
|
|
|
|
|
for _, _ in enumerate(data.create_dict_iterator()): |
|
|
|
|
|
break |
|
|
|
|
|
|
|
|
|
|
|
except ValueError as e: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(e))) |
|
|
|
|
|
assert "Input is not" in str(e) |
|
|
|
|
|
|
|
|
|
|
|
# invalid input shape |
|
|
|
|
|
try: |
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox((10, 10, 10)) # DEFINE TEST OP HERE -- (PROB 1 IN CASE OF RANDOM) |
|
|
|
|
|
|
|
|
|
|
|
# map to apply ops |
|
|
|
|
|
data = data.map(input_columns=["image", "annotation"], |
|
|
|
|
|
output_columns=["image", "annotation"], |
|
|
|
|
|
columns_order=["image", "annotation"], |
|
|
|
|
|
operations=[test_op]) # Add column for "annotation" |
|
|
|
|
|
|
|
|
def test_random_resize_with_bbox_op_bad_c(): |
|
|
|
|
|
""" |
|
|
|
|
|
Tests RandomResizeWithBBox Op with invalid bounding boxes, expected to catch multiple errors |
|
|
|
|
|
""" |
|
|
|
|
|
logger.info("test_random_resize_with_bbox_op_bad_c") |
|
|
|
|
|
test_op = c_vision.RandomResizeWithBBox((400, 300)) |
|
|
|
|
|
|
|
|
for _, _ in enumerate(data.create_dict_iterator()): |
|
|
|
|
|
break |
|
|
|
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WidthOverflow, "bounding boxes is out of bounds of the image") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.HeightOverflow, "bounding boxes is out of bounds of the image") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.NegativeXY, "min_x") |
|
|
|
|
|
data_voc2 = ds.VOCDataset(DATA_DIR, task="Detection", mode="train", decode=True, shuffle=False) |
|
|
|
|
|
check_bad_bbox(data_voc2, test_op, InvalidBBoxType.WrongShape, "4 features") |
|
|
|
|
|
|
|
|
except TypeError as e: |
|
|
|
|
|
logger.info("Got an exception in DE: {}".format(str(e))) |
|
|
|
|
|
assert "Size should be" in str(e) |
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
if __name__ == "__main__": |
|
|
test_random_resize_with_bbox_op(plot=False) |
|
|
|
|
|
test_random_resize_with_bbox_invalid_bounds() |
|
|
|
|
|
test_random_resize_with_bbox_invalid_size() |
|
|
|
|
|
|
|
|
test_random_resize_with_bbox_op_rand_c(plot_vis=False) |
|
|
|
|
|
test_random_resize_with_bbox_op_edge_c(plot_vis=False) |
|
|
|
|
|
test_random_resize_with_bbox_op_invalid_c() |
|
|
|
|
|
test_random_resize_with_bbox_op_bad_c() |