From: @zhao_ting_v Reviewed-by: @wuxuejian,@liangchenghui Signed-off-by: @wuxuejiantags/v1.1.0
| @@ -0,0 +1,95 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/kernel_compiler/cpu/unsorted_segment_sum_cpu_kernel.h" | |||
| #include <string> | |||
| #include "runtime/device/cpu/cpu_device_address.h" | |||
| #include "common/thread_pool.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| void UnsortedSegmentSumCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| size_t input_num = AnfAlgo::GetInputTensorNum(kernel_node); | |||
| if (input_num != 2) { | |||
| MS_LOG(EXCEPTION) << "Input number is " << input_num << ", but UnsortedSegmentSum needs 2 input."; | |||
| } | |||
| size_t output_num = AnfAlgo::GetOutputTensorNum(kernel_node); | |||
| if (output_num != 1) { | |||
| MS_LOG(EXCEPTION) << "Output number is " << output_num << ", but UnsortedSegmentSum needs 1 output."; | |||
| } | |||
| dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 0); | |||
| segment_ids_dtype_ = AnfAlgo::GetPrevNodeOutputInferDataType(kernel_node, 1); | |||
| auto input_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| auto segment_ids_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| auto output_shape = AnfAlgo::GetOutputInferShape(kernel_node, 0); | |||
| for (size_t i = 0; i < input_shape.size(); ++i) { | |||
| unit_num_ *= input_shape[i]; | |||
| if (i >= segment_ids_shape.size()) { | |||
| input_dim1_ *= input_shape[i]; | |||
| } | |||
| } | |||
| output_dim0_ = output_shape[0]; | |||
| for (size_t j = 1; j < output_shape.size(); j++) { | |||
| output_dim1_ *= output_shape[j]; | |||
| } | |||
| } | |||
| bool UnsortedSegmentSumCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| bool ret{true}; | |||
| if (dtype_ == kNumberTypeInt32 && segment_ids_dtype_ == kNumberTypeInt32) { | |||
| ret = LaunchKernel<int, int>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32 && segment_ids_dtype_ == kNumberTypeInt32) { | |||
| ret = LaunchKernel<float, int>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeInt32 && segment_ids_dtype_ == kNumberTypeInt64) { | |||
| ret = LaunchKernel<int, int64_t>(inputs, outputs); | |||
| } else if (dtype_ == kNumberTypeFloat32 && segment_ids_dtype_ == kNumberTypeInt64) { | |||
| ret = LaunchKernel<float, int64_t>(inputs, outputs); | |||
| } else { | |||
| MS_LOG(ERROR) << "Only support input_x int32 and float32, indices int32 and int64"; | |||
| return false; | |||
| } | |||
| return ret; | |||
| } | |||
| template <typename S, typename T> | |||
| bool UnsortedSegmentSumCPUKernel::LaunchKernel(const std::vector<AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> &outputs) { | |||
| S *input_addr = reinterpret_cast<S *>(inputs[0]->addr); | |||
| T *indices_addr = reinterpret_cast<T *>(inputs[1]->addr); | |||
| S *output_addr = reinterpret_cast<S *>(outputs[0]->addr); | |||
| auto ret = memset_s(output_addr, outputs[0]->size, 0, outputs[0]->size); | |||
| if (ret != EOK) { | |||
| MS_LOG(ERROR) << "Output buff memset fail. ret:" << ret; | |||
| return false; | |||
| } | |||
| for (size_t i = 0; i < unit_num_; ++i) { | |||
| size_t j = i / input_dim1_; | |||
| size_t k = i % input_dim1_; | |||
| T index = indices_addr[j]; | |||
| if (index < 0 || index >= SizeToInt(output_dim0_)) { | |||
| continue; | |||
| } | |||
| size_t output_index = index * output_dim1_ + k; | |||
| output_addr[output_index] += input_addr[i]; | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,66 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include <memory> | |||
| #include <unordered_map> | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel.h" | |||
| #include "backend/kernel_compiler/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class UnsortedSegmentSumCPUKernel : public CPUKernel { | |||
| public: | |||
| UnsortedSegmentSumCPUKernel() = default; | |||
| ~UnsortedSegmentSumCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| template <typename S, typename T> | |||
| bool LaunchKernel(const std::vector<AddressPtr> &inputs, const std::vector<kernel::AddressPtr> &outputs); | |||
| private: | |||
| TypeId dtype_{kTypeUnknown}; | |||
| TypeId segment_ids_dtype_{kTypeUnknown}; | |||
| size_t unit_num_{1}; | |||
| size_t input_dim1_{1}; | |||
| size_t output_dim0_{1}; | |||
| size_t output_dim1_{1}; | |||
| }; | |||
| MS_REG_CPU_KERNEL( | |||
| UnsortedSegmentSum, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeFloat32), | |||
| UnsortedSegmentSumCPUKernel); | |||
| MS_REG_CPU_KERNEL( | |||
| UnsortedSegmentSum, | |||
| KernelAttr().AddInputAttr(kNumberTypeFloat32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeFloat32), | |||
| UnsortedSegmentSumCPUKernel); | |||
| MS_REG_CPU_KERNEL( | |||
| UnsortedSegmentSum, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt32).AddOutputAttr(kNumberTypeInt32), | |||
| UnsortedSegmentSumCPUKernel); | |||
| MS_REG_CPU_KERNEL( | |||
| UnsortedSegmentSum, | |||
| KernelAttr().AddInputAttr(kNumberTypeInt32).AddInputAttr(kNumberTypeInt64).AddOutputAttr(kNumberTypeInt32), | |||
| UnsortedSegmentSumCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_CPU_UNSORTED_SEGMENT_SUM_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,105 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common import dtype as mstype | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target='CPU') | |||
| class UnsortedSegmentSumNet(nn.Cell): | |||
| def __init__(self, num_segments): | |||
| super(UnsortedSegmentSumNet, self).__init__() | |||
| self.unsorted_segment_sum = P.UnsortedSegmentSum() | |||
| self.num_segments = num_segments | |||
| def construct(self, data, ids): | |||
| return self.unsorted_segment_sum(data, ids, self.num_segments) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_1D(): | |||
| input_x = Tensor([1, 2, 3, 4], mstype.float32) | |||
| segment_ids = Tensor([0, 0, 1, 2], mstype.int32) | |||
| num_segments = 4 | |||
| net = UnsortedSegmentSumNet(num_segments) | |||
| output = net(input_x, segment_ids) | |||
| expect = [3, 3, 4, 0] | |||
| assert (output.asnumpy() == expect).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_2D(): | |||
| input_x = Tensor([[1, 2, 3, 4], | |||
| [5, 6, 7, 8], | |||
| [9, 10, 11, 12]], mstype.float32) | |||
| segment_ids = Tensor([2, 1, 1], mstype.int32) | |||
| num_segments = 4 | |||
| net = UnsortedSegmentSumNet(num_segments) | |||
| output = net(input_x, segment_ids) | |||
| expect = [[0, 0, 0, 0], | |||
| [14, 16, 18, 20], | |||
| [1, 2, 3, 4], | |||
| [0, 0, 0, 0]] | |||
| assert (output.asnumpy() == expect).all() | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_3D(): | |||
| input_x = Tensor(np.arange(4 * 5 * 3, dtype=np.float32).reshape(4, 5, 3)) | |||
| segment_ids = Tensor([2, 1, 1, -1], mstype.int32) | |||
| num_segments = 5 | |||
| net = UnsortedSegmentSumNet(num_segments) | |||
| output = net(input_x, segment_ids) | |||
| expect = [[[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[45., 47., 49.], | |||
| [51., 53., 55.], | |||
| [57., 59., 61.], | |||
| [63., 65., 67.], | |||
| [69., 71., 73.]], | |||
| [[0., 1., 2.], | |||
| [3., 4., 5.], | |||
| [6., 7., 8.], | |||
| [9., 10., 11.], | |||
| [12., 13., 14.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]], | |||
| [[0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.], | |||
| [0., 0., 0.]]] | |||
| assert (output.asnumpy() == expect).all() | |||