| @@ -40,7 +40,7 @@ class SparseApplyAdamCPUKernel : public CPUKernel { | |||
| bool use_nesterov_{false}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SparseApplyAdam, | |||
| MS_REG_CPU_KERNEL(FusedSparseAdam, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| @@ -42,19 +42,7 @@ class SparseApplyFtrlCPUKernel : public CPUKernel { | |||
| float lr_power_{0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SparseApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SparseApplyFtrlCPUKernel); | |||
| MS_REG_CPU_KERNEL(SparseApplyFtrlNoReturn, | |||
| MS_REG_CPU_KERNEL(FusedSparseFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| @@ -40,7 +40,7 @@ class SparseApplyLazyAdamCPUKernel : public CPUKernel { | |||
| bool use_nesterov_{false}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SparseApplyLazyAdam, | |||
| MS_REG_CPU_KERNEL(FusedSparseLazyAdam, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| @@ -39,20 +39,7 @@ class SparseApplyProximalAdagradCPUKernel : public CPUKernel { | |||
| size_t var_outer_dim_size_{1}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SparseApplyProximalAdagrad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SparseApplyProximalAdagradCPUKernel); | |||
| MS_REG_CPU_KERNEL(SparseApplyProximalAdagradNoReturn, | |||
| MS_REG_CPU_KERNEL(FusedSparseProximalAdagrad, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| @@ -299,7 +299,7 @@ class Adam(Optimizer): | |||
| self.hyper_map = C.HyperMap() | |||
| self.opt = P.Adam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.SparseApplyAdam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.FusedSparseAdam(use_locking, use_nesterov) | |||
| def construct(self, gradients): | |||
| params = self.parameters | |||
| @@ -16,7 +16,6 @@ | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.common import Tensor | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| from mindspore._checkparam import Validator as validator | |||
| from mindspore._checkparam import Rel | |||
| from .optimizer import Optimizer, _apply_decay, _grad_scale | |||
| @@ -159,7 +158,7 @@ class FTRL(Optimizer): | |||
| self.decay_tf = tuple((lambda: True)() for x in self.parameters) | |||
| self.hyper_map = C.HyperMap() | |||
| self.opt = P.ApplyFtrl(use_locking=use_locking) | |||
| self.sparse_opt = inner.SparseApplyFtrlNoReturn(learning_rate, l1, l2, lr_power, use_locking=use_locking) | |||
| self.sparse_opt = P.FusedSparseFtrl(learning_rate, l1, l2, lr_power, use_locking=use_locking) | |||
| def construct(self, grads): | |||
| params = self.parameters | |||
| @@ -182,7 +182,7 @@ class LazyAdam(Optimizer): | |||
| self.hyper_map = C.HyperMap() | |||
| self.opt = P.Adam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.SparseApplyLazyAdam(use_locking, use_nesterov) | |||
| self.sparse_opt = P.FusedSparseLazyAdam(use_locking, use_nesterov) | |||
| def construct(self, gradients): | |||
| gradients = self.decay_weight(gradients) | |||
| @@ -16,7 +16,6 @@ | |||
| from mindspore.ops import functional as F, composite as C, operations as P | |||
| from mindspore.common import Tensor | |||
| import mindspore.common.dtype as mstype | |||
| from mindspore.ops.operations import _inner_ops as inner | |||
| from mindspore._checkparam import Validator as validator | |||
| from mindspore._checkparam import Rel | |||
| from .optimizer import Optimizer | |||
| @@ -101,7 +100,7 @@ class ProximalAdagrad(Optimizer): | |||
| self.weight_decay = weight_decay | |||
| self.hyper_map = C.HyperMap() | |||
| self.opt = P.ApplyProximalAdagrad(use_locking=use_locking) | |||
| self.sparse_opt = inner.SparseApplyProximalAdagradNoReturn(use_locking=use_locking) | |||
| self.sparse_opt = P.FusedSparseProximalAdagrad(use_locking=use_locking) | |||
| def construct(self, grads): | |||
| params = self.parameters | |||
| @@ -56,7 +56,7 @@ from .math_ops import (Abs, ACos, Asin, Asinh, AddN, AccumulateNV2, AssignAdd, A | |||
| from .random_ops import (RandomChoiceWithMask, Normal, Gamma, Poisson, UniformInt, UniformReal, | |||
| RandomCategorical, Laplace) | |||
| from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, ApplyMomentum, BatchNorm, | |||
| from .nn_ops import (LSTM, SGD, Adam, FusedSparseAdam, FusedSparseLazyAdam, ApplyMomentum, BatchNorm, | |||
| BiasAdd, Conv2D, | |||
| DepthwiseConv2dNative, | |||
| DropoutDoMask, DropoutGrad, Dropout, | |||
| @@ -74,6 +74,7 @@ from .nn_ops import (LSTM, SGD, Adam, SparseApplyAdam, SparseApplyLazyAdam, Appl | |||
| SparseSoftmaxCrossEntropyWithLogits, Tanh, | |||
| TopK, BinaryCrossEntropy, SparseApplyAdagrad, LARSUpdate, ApplyFtrl, SparseApplyFtrl, | |||
| ApplyProximalAdagrad, SparseApplyProximalAdagrad, SparseApplyAdagradV2, SparseApplyFtrlV2, | |||
| FusedSparseFtrl, FusedSparseProximalAdagrad, | |||
| ApplyAdaMax, ApplyAdadelta, ApplyAdagrad, ApplyAdagradV2, | |||
| ApplyAddSign, ApplyPowerSign, ApplyGradientDescent, ApplyProximalGradientDescent, | |||
| ApplyRMSProp, ApplyCenteredRMSProp, BasicLSTMCell, InTopK) | |||
| @@ -114,8 +115,8 @@ __all__ = [ | |||
| 'MaxPool', | |||
| 'TopK', | |||
| 'Adam', | |||
| 'SparseApplyAdam', | |||
| 'SparseApplyLazyAdam', | |||
| 'FusedSparseAdam', | |||
| 'FusedSparseLazyAdam', | |||
| 'Softplus', | |||
| 'Softmax', | |||
| 'Softsign', | |||
| @@ -311,8 +312,10 @@ __all__ = [ | |||
| "SpaceToBatch", | |||
| "SparseApplyFtrl", | |||
| "SparseApplyFtrlV2", | |||
| "FusedSparseFtrl", | |||
| "ApplyProximalAdagrad", | |||
| "SparseApplyProximalAdagrad", | |||
| "FusedSparseProximalAdagrad", | |||
| "ApplyAdaMax", | |||
| "ApplyAdadelta", | |||
| "ApplyAdagrad", | |||
| @@ -18,9 +18,6 @@ | |||
| from ..._checkparam import Rel | |||
| from ..._checkparam import Validator as validator | |||
| from ...common import dtype as mstype | |||
| from ..._c_expression import signature_rw as sig_rw | |||
| from ..._c_expression import signature_kind as sig_kind | |||
| from ..._c_expression import signature_dtype as sig_dtype | |||
| from ..primitive import PrimitiveWithInfer, prim_attr_register | |||
| @@ -394,183 +391,6 @@ class Dequant(PrimitiveWithInfer): | |||
| return mstype.float16 | |||
| class SparseApplyFtrlNoReturn(PrimitiveWithInfer): | |||
| """ | |||
| Update relevant entries according to the FTRL-proximal scheme. | |||
| Args: | |||
| lr (float): The learning rate value, must be positive. | |||
| l1 (float): l1 regularization strength, must be greater than or equal to zero. | |||
| l2 (float): l2 regularization strength, must be greater than or equal to zero. | |||
| lr_power (float): Learning rate power controls how the learning rate decreases during training, | |||
| must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero. | |||
| use_locking (bool): Use locks for update operation if True . Default: False. | |||
| Inputs: | |||
| - **var** (Parameter): The variable to be updated. The data type must be float32. | |||
| - **accum** (Parameter): The accum to be updated, must be same type and shape as `var`. | |||
| - **linear** (Parameter): The linear to be updated, must be same type and shape as `var`. | |||
| - **grad** (Tensor): A tensor of the same type as `var`, for the gradient. | |||
| - **indices** (Tensor): A vector of indices into the first dimension of `var` and `accum`. The shape | |||
| of `indices` must be the same as `grad` in first dimension. The type must be int32. | |||
| Outputs: | |||
| Tuple of 3 Tensor, this operator will update the input parameters directly, the outputs are useless. | |||
| - **var** (Tensor) - A Tensor with shape (1,). | |||
| - **accum** (Tensor) - A Tensor with shape (1,). | |||
| - **linear** (Tensor) - A Tensor with shape (1,). | |||
| Examples: | |||
| >>> import mindspore | |||
| >>> import mindspore.nn as nn | |||
| >>> import numpy as np | |||
| >>> from mindspore import Parameter | |||
| >>> from mindspore import Tensor | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class SparseApplyFtrlNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(SparseApplyFtrlNet, self).__init__() | |||
| >>> self.sparse_apply_ftrl = P.SparseApplyFtrlV2(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| >>> self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | |||
| >>> self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | |||
| >>> self.linear = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="linear") | |||
| >>> | |||
| >>> def construct(self, grad, indices): | |||
| >>> out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| >>> return out | |||
| >>> | |||
| >>> net = SparseApplyFtrlNet() | |||
| >>> grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32)) | |||
| >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| >>> output = net(grad, indices) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| ('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('linear', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self, lr, l1, l2, lr_power, use_locking=False): | |||
| self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'], | |||
| outputs=['output']) | |||
| validator.check_value_type("lr", lr, [float], self.name) | |||
| validator.check_value_type("l1", l1, [float], self.name) | |||
| validator.check_value_type("l2", l2, [float], self.name) | |||
| validator.check_value_type("lr_power", lr_power, [float], self.name) | |||
| self.lr = validator.check_number_range("lr", lr, 0.0, float("inf"), Rel.INC_NEITHER, self.name) | |||
| self.l1 = validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, self.name) | |||
| self.l2 = validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, self.name) | |||
| self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) | |||
| self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape): | |||
| validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) | |||
| validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) | |||
| if len(var_shape) > 1: | |||
| validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) | |||
| validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name) | |||
| validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) | |||
| return [1], [1], [1] | |||
| def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype): | |||
| args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype, | |||
| "linear_dtype": linear_dtype, "grad_dtype": grad_dtype} | |||
| validator.check_tensor_type_same(args, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"indices_dtype": indices_dtype}, [mstype.int32], self.name) | |||
| return var_dtype, accum_dtype, linear_dtype | |||
| class SparseApplyProximalAdagradNoReturn(PrimitiveWithInfer): | |||
| r""" | |||
| Updates relevant entries according to the proximal adagrad algorithm. | |||
| .. math:: | |||
| accum += grad * grad | |||
| .. math:: | |||
| \text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} | |||
| .. math:: | |||
| var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0) | |||
| Args: | |||
| use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False. | |||
| Inputs: | |||
| - **var** (Parameter) - Variable tensor to be updated. The data type must be float32. | |||
| - **accum** (Parameter) - Variable tensor to be updated. Has the same dtype as `var`. | |||
| - **lr** (Tensor): The learning rate value. The data type must be float32. | |||
| - **l1** (Tensor): l1 regularization strength. The data type must be float32. | |||
| - **l2** (Tensor): l2 regularization strength. The data type must be float32. | |||
| - **grad** (Tensor) - A tensor of the same type as `var`, for the gradient. The data type must be float32. | |||
| - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The data type | |||
| must be int32. | |||
| Outputs: | |||
| Tuple of 2 Tensor, this operator will update the input parameters directly, the outputs are useless. | |||
| - **var** (Tensor) - A Tensor with shape (1,). | |||
| - **accum** (Tensor) - A Tensor with shape (1,). | |||
| Examples: | |||
| >>> import numpy as np | |||
| >>> import mindspore.nn as nn | |||
| >>> from mindspore import Tensor, Parameter | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class Net(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(Net, self).__init__() | |||
| >>> self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagradV2() | |||
| >>> self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | |||
| >>> self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | |||
| >>> self.lr = Tensor(0.01, mstype.float32) | |||
| >>> self.l1 = Tensor(0.0, mstype.float32) | |||
| >>> self.l2 = Tensor(0.0, mstype.float32) | |||
| >>> def construct(self, grad, indices): | |||
| >>> out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, | |||
| >>> self.l2, grad, indices) | |||
| >>> return out | |||
| >>> net = Net() | |||
| >>> grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32)) | |||
| >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| >>> output = net(grad, indices) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| ('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('l1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('l2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self, use_locking=False): | |||
| self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'], | |||
| outputs=['output']) | |||
| self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def infer_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape, indices_shape): | |||
| validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name) | |||
| return [1], [1] | |||
| def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype, indices_dtype): | |||
| args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype} | |||
| validator.check_tensor_type_same(args, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"lr": lr_dtype}, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"l1": l1_dtype}, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"l2": l2_dtype}, [mstype.float32], self.name) | |||
| valid_types = [mstype.int16, mstype.int32, mstype.int64, | |||
| mstype.uint16, mstype.uint32, mstype.uint64] | |||
| validator.check_tensor_type_same({'indices': indices_dtype}, valid_types, self.name) | |||
| return var_dtype, accum_dtype | |||
| class LinSpace(PrimitiveWithInfer): | |||
| r""" | |||
| Generates values in an interval. And return the corresponding interpolation accroding to assist. | |||
| @@ -2917,7 +2917,7 @@ class Adam(PrimitiveWithInfer): | |||
| return var_dtype, m_dtype, v_dtype | |||
| class SparseApplyAdam(PrimitiveWithInfer): | |||
| class FusedSparseAdam(PrimitiveWithInfer): | |||
| r""" | |||
| Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam) | |||
| algorithm. This operator is used when the gradient is sparse. | |||
| @@ -2979,7 +2979,7 @@ class SparseApplyAdam(PrimitiveWithInfer): | |||
| >>> class Net(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(Net, self).__init__() | |||
| >>> self.sparse_apply_adam = P.SparseApplyAdam() | |||
| >>> self.sparse_apply_adam = P.FusedSparseAdam() | |||
| >>> self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | |||
| >>> self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | |||
| >>> self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | |||
| @@ -3025,7 +3025,6 @@ class SparseApplyAdam(PrimitiveWithInfer): | |||
| self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2', | |||
| 'epsilon', 'grad', 'indices'], | |||
| outputs=['var', 'm', 'v']) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape, | |||
| beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape): | |||
| @@ -3051,7 +3050,7 @@ class SparseApplyAdam(PrimitiveWithInfer): | |||
| return var_dtype, m_dtype, v_dtype | |||
| class SparseApplyLazyAdam(PrimitiveWithInfer): | |||
| class FusedSparseLazyAdam(PrimitiveWithInfer): | |||
| r""" | |||
| Merge the duplicate value of the gradient and then updates parameters by Adaptive Moment Estimation (Adam) | |||
| algorithm. This operator is used when the gradient is sparse. The behavior is not equivalent to the | |||
| @@ -3114,7 +3113,7 @@ class SparseApplyLazyAdam(PrimitiveWithInfer): | |||
| >>> class Net(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(Net, self).__init__() | |||
| >>> self.sparse_apply_lazyadam = P.SparseApplyLazyAdam() | |||
| >>> self.sparse_apply_lazyadam = P.FusedSparseLazyAdam() | |||
| >>> self.var = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="var") | |||
| >>> self.m = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="m") | |||
| >>> self.v = Parameter(Tensor(np.ones([3, 1, 2]).astype(np.float32)), name="v") | |||
| @@ -3160,7 +3159,6 @@ class SparseApplyLazyAdam(PrimitiveWithInfer): | |||
| self.init_prim_io_names(inputs=['var', 'm', 'v', 'beta1_power', 'beta2_power', 'lr', 'beta1', 'beta2', | |||
| 'epsilon', 'grad', 'indices'], | |||
| outputs=['var', 'm', 'v']) | |||
| self.add_prim_attr('primitive_target', 'CPU') | |||
| def infer_shape(self, var_shape, m_shape, v_shape, beta1_power_shape, beta2_power_shape, lr_shape, | |||
| beta1_shape, beta2_shape, epsilon_shape, grad_shape, indices_shape): | |||
| @@ -3187,6 +3185,182 @@ class SparseApplyLazyAdam(PrimitiveWithInfer): | |||
| return var_dtype, m_dtype, v_dtype | |||
| class FusedSparseFtrl(PrimitiveWithInfer): | |||
| """ | |||
| Merge the duplicate value of the gradient and then update relevant entries according to the FTRL-proximal scheme. | |||
| Args: | |||
| lr (float): The learning rate value, must be positive. | |||
| l1 (float): l1 regularization strength, must be greater than or equal to zero. | |||
| l2 (float): l2 regularization strength, must be greater than or equal to zero. | |||
| lr_power (float): Learning rate power controls how the learning rate decreases during training, | |||
| must be less than or equal to zero. Use fixed learning rate if `lr_power` is zero. | |||
| use_locking (bool): Use locks for update operation if True . Default: False. | |||
| Inputs: | |||
| - **var** (Parameter): The variable to be updated. The data type must be float32. | |||
| - **accum** (Parameter): The accum to be updated, must be same type and shape as `var`. | |||
| - **linear** (Parameter): The linear to be updated, must be same type and shape as `var`. | |||
| - **grad** (Tensor): A tensor of the same type as `var`, for the gradient. | |||
| - **indices** (Tensor): A vector of indices into the first dimension of `var` and `accum`. The shape | |||
| of `indices` must be the same as `grad` in first dimension. The type must be int32. | |||
| Outputs: | |||
| Tuple of 3 Tensor, this operator will update the input parameters directly, the outputs are useless. | |||
| - **var** (Tensor) - A Tensor with shape (1,). | |||
| - **accum** (Tensor) - A Tensor with shape (1,). | |||
| - **linear** (Tensor) - A Tensor with shape (1,). | |||
| Examples: | |||
| >>> import mindspore | |||
| >>> import mindspore.nn as nn | |||
| >>> import numpy as np | |||
| >>> from mindspore import Parameter | |||
| >>> from mindspore import Tensor | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class SparseApplyFtrlNet(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(SparseApplyFtrlNet, self).__init__() | |||
| >>> self.sparse_apply_ftrl = P.FusedSparseFtrl(lr=0.01, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| >>> self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | |||
| >>> self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | |||
| >>> self.linear = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="linear") | |||
| >>> | |||
| >>> def construct(self, grad, indices): | |||
| >>> out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| >>> return out | |||
| >>> | |||
| >>> net = SparseApplyFtrlNet() | |||
| >>> grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32)) | |||
| >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| >>> output = net(grad, indices) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| ('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('linear', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self, lr, l1, l2, lr_power, use_locking=False): | |||
| self.init_prim_io_names(inputs=['var', 'accum', 'linear', 'grad', 'indices'], | |||
| outputs=['output']) | |||
| validator.check_value_type("lr", lr, [float], self.name) | |||
| validator.check_value_type("l1", l1, [float], self.name) | |||
| validator.check_value_type("l2", l2, [float], self.name) | |||
| validator.check_value_type("lr_power", lr_power, [float], self.name) | |||
| self.lr = validator.check_number_range("lr", lr, 0.0, float("inf"), Rel.INC_NEITHER, self.name) | |||
| self.l1 = validator.check_number_range("l1", l1, 0.0, float("inf"), Rel.INC_LEFT, self.name) | |||
| self.l2 = validator.check_number_range("l2", l2, 0.0, float("inf"), Rel.INC_LEFT, self.name) | |||
| self.lr_power = validator.check_number("lr_power", lr_power, 0, Rel.LE, self.name) | |||
| self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) | |||
| def infer_shape(self, var_shape, accum_shape, linear_shape, grad_shape, indices_shape): | |||
| validator.check('var shape', var_shape, 'accum shape', accum_shape, Rel.EQ, self.name) | |||
| validator.check('var shape', var_shape, 'linear shape', linear_shape, Rel.EQ, self.name) | |||
| if len(var_shape) > 1: | |||
| validator.check('var_shape[1:]', var_shape[1:], 'grad_shape[1:]', grad_shape[1:], Rel.EQ, self.name) | |||
| validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name) | |||
| validator.check('grad_shape[0]', grad_shape[0], 'indices_shape[0]', indices_shape[0], Rel.EQ, self.name) | |||
| return [1], [1], [1] | |||
| def infer_dtype(self, var_dtype, accum_dtype, linear_dtype, grad_dtype, indices_dtype): | |||
| args = {"var_dtype": var_dtype, "accum_dtype": accum_dtype, | |||
| "linear_dtype": linear_dtype, "grad_dtype": grad_dtype} | |||
| validator.check_tensor_type_same(args, [mstype.float32], self.name) | |||
| validator.check_tensor_type_same({"indices_dtype": indices_dtype}, [mstype.int32], self.name) | |||
| return var_dtype, accum_dtype, linear_dtype | |||
| class FusedSparseProximalAdagrad(PrimitiveWithInfer): | |||
| r""" | |||
| Merge the duplicate value of the gradient and then Updates relevant entries according to the proximal adagrad | |||
| algorithm. | |||
| .. math:: | |||
| accum += grad * grad | |||
| .. math:: | |||
| \text{prox_v} = var - lr * grad * \frac{1}{\sqrt{accum}} | |||
| .. math:: | |||
| var = \frac{sign(\text{prox_v})}{1 + lr * l2} * \max(\left| \text{prox_v} \right| - lr * l1, 0) | |||
| Args: | |||
| use_locking (bool): If True, updating of the var and accum tensors will be protected. Default: False. | |||
| Inputs: | |||
| - **var** (Parameter) - Variable tensor to be updated. The data type must be float32. | |||
| - **accum** (Parameter) - Variable tensor to be updated. Has the same dtype as `var`. | |||
| - **lr** (Tensor): The learning rate value. The data type must be float32. | |||
| - **l1** (Tensor): l1 regularization strength. The data type must be float32. | |||
| - **l2** (Tensor): l2 regularization strength. The data type must be float32. | |||
| - **grad** (Tensor) - A tensor of the same type as `var`, for the gradient. The data type must be float32. | |||
| - **indices** (Tensor) - A vector of indices into the first dimension of `var` and `accum`. The data type | |||
| must be int32. | |||
| Outputs: | |||
| Tuple of 2 Tensor, this operator will update the input parameters directly, the outputs are useless. | |||
| - **var** (Tensor) - A Tensor with shape (1,). | |||
| - **accum** (Tensor) - A Tensor with shape (1,). | |||
| Examples: | |||
| >>> import numpy as np | |||
| >>> import mindspore.nn as nn | |||
| >>> from mindspore import Tensor, Parameter | |||
| >>> from mindspore.ops import operations as P | |||
| >>> class Net(nn.Cell): | |||
| >>> def __init__(self): | |||
| >>> super(Net, self).__init__() | |||
| >>> self.sparse_apply_proximal_adagrad = P.FusedSparseProximalAdagrad() | |||
| >>> self.var = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="var") | |||
| >>> self.accum = Parameter(Tensor(np.random.rand(3, 1, 2).astype(np.float32)), name="accum") | |||
| >>> self.lr = Tensor(0.01, mstype.float32) | |||
| >>> self.l1 = Tensor(0.0, mstype.float32) | |||
| >>> self.l2 = Tensor(0.0, mstype.float32) | |||
| >>> def construct(self, grad, indices): | |||
| >>> out = self.sparse_apply_proximal_adagrad(self.var, self.accum, self.lr, self.l1, | |||
| >>> self.l2, grad, indices) | |||
| >>> return out | |||
| >>> net = Net() | |||
| >>> grad = Tensor(np.random.rand(2, 1, 2).astype(np.float32)) | |||
| >>> indices = Tensor(np.array([0, 1]).astype(np.int32)) | |||
| >>> output = net(grad, indices) | |||
| """ | |||
| __mindspore_signature__ = ( | |||
| ('var', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('accum', sig_rw.RW_WRITE, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('lr', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('l1', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('l2', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('grad', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T), | |||
| ('indices', sig_rw.RW_READ, sig_kind.KIND_POSITIONAL_KEYWORD, sig_kind.KIND_EMPTY_DEFAULT_VALUE, sig_dtype.T1) | |||
| ) | |||
| @prim_attr_register | |||
| def __init__(self, use_locking=False): | |||
| self.init_prim_io_names(inputs=['var', 'accum', 'lr', 'l1', 'l2', 'grad', 'indices'], | |||
| outputs=['output']) | |||
| self.use_locking = validator.check_value_type("use_locking", use_locking, [bool], self.name) | |||
| def infer_shape(self, var_shape, accum_shape, lr_shape, l1_shape, l2_shape, grad_shape, indices_shape): | |||
| validator.check_integer("indices rank", len(indices_shape), 1, Rel.EQ, self.name) | |||
| return [1], [1] | |||
| def infer_dtype(self, var_dtype, accum_dtype, lr_dtype, l1_dtype, l2_dtype, grad_dtype, indices_dtype): | |||
| args = {'var': var_dtype, 'accum': accum_dtype, 'grad': grad_dtype} | |||
| validator.check_tensor_type_same(args, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"lr": lr_dtype}, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"l1": l1_dtype}, [mstype.float32], self.name) | |||
| validator.check_scalar_or_tensor_type_same({"l2": l2_dtype}, [mstype.float32], self.name) | |||
| valid_types = [mstype.int16, mstype.int32, mstype.int64, | |||
| mstype.uint16, mstype.uint32, mstype.uint64] | |||
| validator.check_tensor_type_same({'indices': indices_dtype}, valid_types, self.name) | |||
| return var_dtype, accum_dtype | |||
| class BinaryCrossEntropy(PrimitiveWithInfer): | |||
| r""" | |||
| Computes the Binary Cross Entropy between the target and the output. | |||
| @@ -33,7 +33,7 @@ epsilon = 1e-8 | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.sparse_apply_adam = P.SparseApplyAdam() | |||
| self.sparse_apply_adam = P.FusedSparseAdam() | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.m = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="m") | |||
| self.v = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="v") | |||
| @@ -26,7 +26,7 @@ import mindspore.common.dtype as mstype | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| self.sparse_apply_ftrl = P.FusedSparseFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum") | |||
| self.linear = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="linear") | |||
| @@ -26,7 +26,7 @@ import mindspore.common.dtype as mstype | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.sparse_apply_proximal_adagrad = P.SparseApplyProximalAdagrad() | |||
| self.sparse_apply_proximal_adagrad = P.FusedSparseProximalAdagrad() | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum") | |||
| self.lr = 0.01 | |||