|
|
|
@@ -14,27 +14,6 @@ |
|
|
|
# ============================================================================ |
|
|
|
"""LeNet.""" |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
"""weight initial for conv layer""" |
|
|
|
weight = weight_variable() |
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
"""weight initial for fc layer""" |
|
|
|
weight = weight_variable() |
|
|
|
bias = weight_variable() |
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
"""weight initial""" |
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
class LeNet5(nn.Cell): |
|
|
|
@@ -43,6 +22,7 @@ class LeNet5(nn.Cell): |
|
|
|
|
|
|
|
Args: |
|
|
|
num_class (int): Num classes. Default: 10. |
|
|
|
channel (int): Num classes. Default: 1. |
|
|
|
|
|
|
|
Returns: |
|
|
|
Tensor, output tensor |
|
|
|
@@ -53,26 +33,20 @@ class LeNet5(nn.Cell): |
|
|
|
def __init__(self, num_class=10, channel=1): |
|
|
|
super(LeNet5, self).__init__() |
|
|
|
self.num_class = num_class |
|
|
|
self.conv1 = conv(channel, 6, 5) |
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120) |
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class) |
|
|
|
self.conv1 = nn.Conv2d(channel, 6, 5, pad_mode='valid') |
|
|
|
self.conv2 = nn.Conv2d(6, 16, 5, pad_mode='valid') |
|
|
|
self.fc1 = nn.Dense(16 * 5 * 5, 120) |
|
|
|
self.fc2 = nn.Dense(120, 84) |
|
|
|
self.fc3 = nn.Dense(84, self.num_class) |
|
|
|
self.relu = nn.ReLU() |
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
self.flatten = nn.Flatten() |
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
x = self.conv1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.conv2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.max_pool2d(x) |
|
|
|
x = self.max_pool2d(self.relu(self.conv1(x))) |
|
|
|
x = self.max_pool2d(self.relu(self.conv2(x))) |
|
|
|
x = self.flatten(x) |
|
|
|
x = self.fc1(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.fc2(x) |
|
|
|
x = self.relu(x) |
|
|
|
x = self.relu(self.fc1(x)) |
|
|
|
x = self.relu(self.fc2(x)) |
|
|
|
x = self.fc3(x) |
|
|
|
return x |