Browse Source

update codegen CI models and script

pull/15325/head
zhujingxuan 4 years ago
parent
commit
1bf4ebf98e
2 changed files with 221 additions and 6 deletions
  1. +170
    -0
      mindspore/lite/test/codegen/models_tflite.cfg
  2. +51
    -6
      mindspore/lite/test/codegen/run_benchmark_codegen.sh

+ 170
- 0
mindspore/lite/test/codegen/models_tflite.cfg View File

@@ -1 +1,171 @@
hiai_model_0909_kd_rot_ps_softmax.tflite
# hiai_chinese_english_recognize_model_float32.tflite
# hiai_bigmodel_ghost_2_1_no_normalized_no_trans_tflite.tflite
# hiai_bigmodel_ghost_5_1_no_normalized_no_trans_tflite.tflite
# hiai_cn_recognize_modify_padv2.tflite
# hiai_model_normalize_object_scene_ps_20200519.tflite
# mtk_AADB_HADB_MBV2_model_fp32.tflite
# mtk_AADB_HADB_MBV3_model_fp32.tflite
mobilenet_v1_0.25_128.tflite
mobilenet_v1_0.25_160.tflite
mobilenet_v1_0.25_192.tflite
mobilenet_v1_0.25_224.tflite
mobilenet_v1_0.5_128.tflite
mobilenet_v1_0.5_160.tflite
mobilenet_v1_0.5_192.tflite
mobilenet_v1_0.5_224.tflite
mobilenet_v1_0.75_128.tflite
mobilenet_v1_0.75_160.tflite
mobilenet_v1_0.75_192.tflite
mobilenet_v1_0.75_224.tflite
mobilenet_v1_1.0_128.tflite
mobilenet_v1_1.0_160.tflite
mobilenet_v1_1.0_192.tflite
mobilenet_v1_1.0_224.tflite
mobilenet_v2_1.0_224.tflite
# mtk_model_normalize_object_scene_ps_20200519_f32.tflite
# mtk_model_ckpt.tflite
mtk_age_gender.tflite
# mtk_model_face_dress.tflite
# mtk_face_features_v1.tflite
# densenet.tflite
squeezenet.tflite
# resnet_v2_101_299.tflite
# mnasnet_1.3_224.tflite
inception_v3.tflite
# deeplabv3_257_mv_gpu.tflite
# multi_person_mobilenet_v1_075_float.tflite
# hiai_vad.tflite
# ide_label_base.tflite
# ide_label_retrained.tflite
ml_ei_headpose.tflite
# ml_ei_landmark.tflite
mnist.tflite
mobilenet.tflite
resnet.tflite
scan_hms_angle1.tflite
# scan_hms_detect.tflite
# hiai_latin_ocr.tflite
# hiai_latin_ocr_1.tflite
# ml_ocr_jk.tflite
# nasnet_mobile.tflite
# nasnet_large.tflite
# model_emotions_0727_nosoftmax.tflite
# inception_resnet_v2.tflite
# ml_ocr_latin.tflite
# hiai_PoseEstimation_Pcm.tflite
# hiai_ssd_mobilenetv2_object.tflite
# hiai_cv_focusShootOCRModel_02.tflite
# hiai_cv_poseEstimation.tflite
inception_v4.tflite
# mtk_model_normalize_object_scene_ps_20200519_f16.tflite
# mtk_age_gender_fp16.tflite
# mtk_model_face_dress_fp16.tflite
mtk_AADB_HADB_MBV2_model_f16.tflite
# mtk_AADB_HADB_MBV3_model_f16.tflite
# mtk_model_emotions_0725_fp16.tflite
# mtk_face_features_v1_fp16.tflite
# siteAI_digcom_AI_ECN.tflite
siteAI_digcom_g2v_keras.tflite
siteAI_trans_nonlinear.tflite
siteAI_trans_tcpclassify.tflite
siteAI_wireless_depress_w.tflite
siteAI_wireless_restore_w.tflite
# magenta_arbitrary-image-stylization-v1-256_fp16_prediction_1.tflite
# ml_object_detect.tflite
# ml_object_detect_1.tflite
hiai_cpu_face_emotion.tflite
hiai_cpu_face_gazing.tflite
# hiai_cpu_face_headpose.tflite
# hiai_humanDetection.tflite
# hiai_cv_focusShootOCRModel_08.tflite
# ml_face_openclose.tflite
# hiai_face_model_npu.tflite
# hiai_ctpn_feature_map.tflite
# hiai_cv_labelDetectorModel_v2.tflite
hiai_cv_labelDetectorModel_v4.tflite
# hiai_dress_detect.tflite
# hiai_cv_saliencyDetectorModel.tflite
# hiai_frozen_inference_graph.tflite
# hiai_ghostnet.tflite
# hiai_iMaxDN_RGB.tflite
# hiai_iMaxSR_RGB.tflite
hiai_label_and_video.tflite
# hiai_lm_inference_graph.tflite
efficientnet_lite0_fp32_2.tflite
efficientnet_lite1_fp32_2.tflite
efficientnet_lite2_fp32_2.tflite
efficientnet_lite3_fp32_2.tflite
efficientnet_lite4_fp32_2.tflite
# mnasnet_0.50_224_1_metadata_1.tflite
# mnasnet_0.75_224_1_metadata_1.tflite
# mnasnet_1.0_128_1_metadata_1.tflite
# mnasnet_1.0_160_1_metadata_1.tflite
# mnasnet_1.0_192_1_metadata_1.tflite
# mnasnet_1.0_224_1_metadata_1.tflite
# mnasnet_1.0_96_1_metadata_1.tflite
# lite-model_on_device_vision_classifier_popular_us_products_V1_1.tflite
# lite-model_on_device_vision_classifier_popular_wine_V1_1.tflite
# posenet_mobilenet_float_075_1_default_1.tflite
# deeplabv3_1_default_1.tflite
# lite-model_deeplabv3-mobilenetv2_dm05-float16_1_default_1.tflite
# lite-model_deeplabv3-mobilenetv2-float16_1_default_1.tflite
# lite-model_east-text-detector_fp16_1.tflite
# lite-model_cartoongan_fp16_1.tflite
# lite-model_arbitrary-image-stylization-inceptionv3_fp16_predict_1.tflite
# gts_detect_5k_tf115.tflite
# mtk_isface.tflite
# mtk_landmark.tflite
# mtk_new_detect.tflite
# mtk_pose.tflite
# mtk_model_emotions_0727_nosoftmax.tflite
# mtk_model_normalize_object_scene_ps_20200826_f32_no_softmax.tflite
# mtk_276landmark_0913.tflite
# mtk_face_recognition.tflite
# mtk_convert_model.tflite
# smartreply.tflite
# mindspore_text_classification_tflite.tflite
# ml_location.tflite
# ml_text_correction.tflite
# ml_pic_shopping.tflite
# ml_vision_guide_detection3_pb2tflite.tflite
# ml_vision_guide_detection1_pb2tflite.tflite
# ml_pic_shopping_pb2tflite.tflite
# ml_ocr_jk_pb2tflite.tflite
# ml_ocr_latin_pb2tflite.tflite
# scan_hms_angle_pb2tflite.tflite
# scan_hms_detect_pb2tflite.tflite
# ml_location.tflite
# ml_face_openclose_tflite.tflite
# ml_object_detect_pb2tflite.tflite
Q_AADB_HADB_MBV2_model.tflite
# Q_convert.tflite
# Q_crnn_ori_75w_slim_norm_pb2tflite.tflite
# Q_crnn_ori_v2_405001_notrans_nopre_pb2tflite.tflite
# Q_crnn_screen_slim400w_more_20w_pb2tflite.tflite
# Q_dila-small-mix-full-fineturn-390000-nopixel-nosigmoid_tflite.tflite
# Q_focusocr_cn_recog.tflite
# Q_focusocr_jk_recog.tflite
# Q_inception-249970-672-11-16_pb2tflite.tflite
# Q_isface.tflite
# Q_landmark.tflite
# Q_language_model_hrmini_Q4_b4_17w.tflite
# Q_new_detect.tflite
# Q_object_scene.tflite
# Q_pose.tflite
# ml_ei_landmark_pb2tflite.tflite
# unet_mbv2_05_104pts.tflite
# hiai_AADB_HADB_MBV2_model_f16.tflite
# hiai_AADB_HADB_MBV2_model_fp32.tflite
# hiai_detect_curve_model_float32.tflite
# hiai_detectmodel_06_23_960_480_1180700.tflite
# hiai_detectmodel_desnet_256_128_64_32.tflite
# lite-model_aiy_vision_classifier_food_V1_1.tflite
# lite-model_disease-classification_1.tflite
# lite-model_models_mushroom-identification_v1_1.tflite
# lite-model_albert_lite_base_squadv1_metadata_1.tflite
# lite-model_mobilebert_1_metadata_1.tflite
# smartreply_1_default_1.tflite
# text_classification.tflite
# Q_detect_fpn_add_inception-1448650.tflite
# Q_hand_0812_pb2tflite.tflite

+ 51
- 6
mindspore/lite/test/codegen/run_benchmark_codegen.sh View File

@@ -1,5 +1,33 @@
#!/bin/bash

function Run_Converter() {
cd ${x86_path} || exit 1
tar -zxf mindspore-lite-${version}-inference-linux-x64.tar.gz || exit 1
cd ${x86_path}/mindspore-lite-${version}-inference-linux-x64/ || exit 1

cp tools/converter/converter/converter_lite ./ || exit 1
export LD_LIBRARY_PATH=${LD_LIBRARY_PATH}:./tools/converter/lib/:./tools/converter/third_party/glog/lib

rm -rf ${ms_models_path}
mkdir -p ${ms_models_path}

# Convert tflite models:
while read line; do
model_name=${line}
if [[ $model_name == \#* ]]; then
continue
fi
echo ${model_name} >> "${run_converter_log_file}"
echo './converter_lite --fmk=TFLITE --modelFile='${models_path}'/'${model_name}' --outputFile='${ms_models_path}'/'${model_name}'' >> "${run_converter_log_file}"
./converter_lite --fmk=TFLITE --modelFile=$models_path/${model_name} --outputFile=${ms_models_path}/${model_name}
if [ $? = 0 ]; then
converter_result='converter tflite '${model_name}' pass';echo ${converter_result} >> ${run_converter_result_file}
else
converter_result='converter tflite '${model_name}' failed';echo ${converter_result} >> ${run_converter_result_file};return 1
fi
done < ${models_tflite_config}
}

function Run_x86() {
local CODEGEN_PATH=${x86_path}/mindspore-lite-${version}-inference-linux-x64/tools/codegen

@@ -64,8 +92,8 @@ function Print_Benchmark_Result() {
basepath=$(pwd)
echo ${basepath}

# Example:sh run_benchmark_nets.sh -r /home/temp_test -m /home/temp_test/models -s /home/temp_test/ms_models -d "8KE5T19620002408"
while getopts "r:m:e:s:" opt; do
# Example:sh run_benchmark_nets.sh -r /home/temp_test -m /home/temp_test/models -d "8KE5T19620002408"
while getopts "r:m:e:" opt; do
case ${opt} in
r)
release_path=${OPTARG}
@@ -75,10 +103,6 @@ while getopts "r:m:e:s:" opt; do
models_path=${OPTARG}
echo "models_path is ${OPTARG}"
;;
s)
ms_models_path=${OPTARG}
echo "ms_models_path is ${OPTARG}"
;;
e)
backend=${OPTARG}
echo "backend is ${OPTARG}"
@@ -94,6 +118,7 @@ file_name=$(ls ${x86_path}/*inference-linux-x64.tar.gz)
IFS="-" read -r -a file_name_array <<< "$file_name"
version=${file_name_array[2]}

ms_models_path=${basepath}/ms_models
build_path=${basepath}/build
models_tflite_config=${basepath}/models_tflite.cfg

@@ -107,6 +132,26 @@ echo ' ' > ${run_converter_result_file}
run_x86_log_file=${basepath}/run_x86_log.txt
echo 'run x86 logs: ' > ${run_x86_log_file}

# Run converter
echo "start Run converter ..."
Run_Converter
Run_converter_PID=$!
sleep 1

wait ${Run_converter_PID}
Run_converter_status=$?

# Check converter result and return value
if [[ ${Run_converter_status} = 0 ]];then
echo "Run converter success"
Print_Converter_Result
else
echo "Run converter failed"
cat ${run_converter_log_file}
Print_Converter_Result
exit 1
fi

# Write benchmark result to temp file
run_benchmark_result_file=${basepath}/run_benchmark_result.txt
echo ' ' > ${run_benchmark_result_file}


Loading…
Cancel
Save