Merge pull request !1125 from jiangjinsheng/space_to_depthtags/v0.3.0-alpha
| @@ -164,6 +164,8 @@ from .avg_pool_grad import _avg_pool_grad_tbe | |||
| from .ones_like import _ones_like_tbe | |||
| from .batch_to_space import _batch_to_space_tbe | |||
| from .space_to_batch import _space_to_batch_tbe | |||
| from .depth_to_space import _depth_to_space_tbe | |||
| from .space_to_depth import _space_to_depth_tbe | |||
| from .floor import _floor_tbe | |||
| from .log1p import _log1p_tbe | |||
| from .resize_bilinear import _resize_bilinear_tbe | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """DepthToSpace op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| depth_to_space_op_info = TBERegOp("DepthToSpace") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("depth_to_space.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("depth_to_space") \ | |||
| .partial_flag(True) \ | |||
| .attr("block_size", "required", "int", "all") \ | |||
| .attr("data_format", "optional", "str", "all") \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", False, "required", "all") \ | |||
| .dtype_format(DataType.F16_NHWC, DataType.F16_NHWC) \ | |||
| .dtype_format(DataType.F32_NHWC, DataType.F32_NHWC) \ | |||
| .dtype_format(DataType.I8_NHWC, DataType.I8_NHWC) \ | |||
| .dtype_format(DataType.I16_NHWC, DataType.I16_NHWC) \ | |||
| .dtype_format(DataType.I32_NHWC, DataType.I32_NHWC) \ | |||
| .dtype_format(DataType.I64_NHWC, DataType.I64_NHWC) \ | |||
| .dtype_format(DataType.U8_NHWC, DataType.U8_NHWC) \ | |||
| .dtype_format(DataType.U16_NHWC, DataType.U16_NHWC) \ | |||
| .dtype_format(DataType.U32_NHWC, DataType.U32_NHWC) \ | |||
| .dtype_format(DataType.U64_NHWC, DataType.U64_NHWC) \ | |||
| .get_op_info() | |||
| @op_info_register(depth_to_space_op_info) | |||
| def _depth_to_space_tbe(): | |||
| """DepthToSpace TBE register""" | |||
| return | |||
| @@ -0,0 +1,46 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| """SpaceToDepth op""" | |||
| from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType | |||
| space_to_depth_op_info = TBERegOp("SpaceToDepth") \ | |||
| .fusion_type("OPAQUE") \ | |||
| .async_flag(False) \ | |||
| .binfile_name("space_to_depth.so") \ | |||
| .compute_cost(10) \ | |||
| .kernel_name("space_to_depth") \ | |||
| .partial_flag(True) \ | |||
| .attr("block_size", "required", "int", "all") \ | |||
| .attr("data_format", "optional", "str", "all") \ | |||
| .input(0, "x", False, "required", "all") \ | |||
| .output(0, "y", False, "required", "all") \ | |||
| .dtype_format(DataType.F16_NHWC, DataType.F16_NHWC) \ | |||
| .dtype_format(DataType.F32_NHWC, DataType.F32_NHWC) \ | |||
| .dtype_format(DataType.I8_NHWC, DataType.I8_NHWC) \ | |||
| .dtype_format(DataType.I16_NHWC, DataType.I16_NHWC) \ | |||
| .dtype_format(DataType.I32_NHWC, DataType.I32_NHWC) \ | |||
| .dtype_format(DataType.I64_NHWC, DataType.I64_NHWC) \ | |||
| .dtype_format(DataType.U8_NHWC, DataType.U8_NHWC) \ | |||
| .dtype_format(DataType.U16_NHWC, DataType.U16_NHWC) \ | |||
| .dtype_format(DataType.U32_NHWC, DataType.U32_NHWC) \ | |||
| .dtype_format(DataType.U64_NHWC, DataType.U64_NHWC) \ | |||
| .get_op_info() | |||
| @op_info_register(space_to_depth_op_info) | |||
| def _space_to_depth_tbe(): | |||
| """SpaceToDepth TBE register""" | |||
| return | |||
| @@ -2127,7 +2127,6 @@ class SpaceToDepth(PrimitiveWithInfer): | |||
| validator.check_value_type('block_size', block_size, [int], self.name) | |||
| validator.check('block_size', block_size, '', 2, Rel.GE) | |||
| self.block_size = block_size | |||
| self.add_prim_attr("data_format", "NCHW") | |||
| def infer_shape(self, x_shape): | |||
| validator.check('x dimension', len(x_shape), '', 4, Rel.EQ) | |||
| @@ -2185,7 +2184,6 @@ class DepthToSpace(PrimitiveWithInfer): | |||
| validator.check_value_type('block_size', block_size, [int], self.name) | |||
| validator.check('block_size', block_size, '', 2, Rel.GE, self.name) | |||
| self.block_size = block_size | |||
| self.add_prim_attr("data_format", "NCHW") | |||
| def infer_shape(self, x_shape): | |||
| validator.check('x dimension', len(x_shape), '', 4, Rel.EQ) | |||
| @@ -243,6 +243,25 @@ class UnpackNet(Cell): | |||
| def construct(self, x): | |||
| return self.unpack(x) | |||
| class SpaceToDepthNet(Cell): | |||
| def __init__(self): | |||
| super(SpaceToDepthNet, self).__init__() | |||
| block_size = 2 | |||
| self.space_to_depth = P.SpaceToDepth(block_size) | |||
| def construct(self, x): | |||
| return self.space_to_depth(x) | |||
| class DepthToSpaceNet(Cell): | |||
| def __init__(self): | |||
| super(DepthToSpaceNet, self).__init__() | |||
| block_size = 2 | |||
| self.depth_to_space = P.DepthToSpace(block_size) | |||
| def construct(self, x): | |||
| return self.depth_to_space(x) | |||
| test_case_array_ops = [ | |||
| ('CustNet1', { | |||
| @@ -272,6 +291,12 @@ test_case_array_ops = [ | |||
| ('UnpackNet', { | |||
| 'block': UnpackNet(), | |||
| 'desc_inputs': [Tensor(np.array([[1, 2], [3, 4]]).astype(np.float16))]}), | |||
| ('SpaceToDepthNet', { | |||
| 'block': SpaceToDepthNet(), | |||
| 'desc_inputs': [Tensor(np.random.rand(1,3,2,2).astype(np.float16))]}), | |||
| ('DepthToSpaceNet', { | |||
| 'block': DepthToSpaceNet(), | |||
| 'desc_inputs': [Tensor(np.random.rand(1,12,1,1).astype(np.float16))]}), | |||
| ] | |||
| test_case_lists = [test_case_array_ops] | |||