| @@ -0,0 +1,58 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/square_sum_all_impl.cuh" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/util.cuh" | |||||
| template <typename T> | |||||
| __global__ void SquareSumAllKernel(const size_t size, const T* input_addr_0, const T* input_addr_1, | |||||
| T* output_addr_0, T* output_addr_1) { | |||||
| for (size_t i = blockIdx.x * blockDim.x + threadIdx.x; i < size; i += gridDim.x * blockDim.x) { | |||||
| size_t split = size / 2; | |||||
| if (i < split) { | |||||
| T ret = input_addr_0[i] * input_addr_0[i]; | |||||
| MsAtomicAdd(output_addr_0, ret); | |||||
| } else { | |||||
| T ret = input_addr_1[i - split] * input_addr_1[i - split]; | |||||
| MsAtomicAdd(output_addr_1, ret); | |||||
| } | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| __global__ void InitOutput(const size_t size, T *output) { | |||||
| T zero = 0; | |||||
| for (size_t id = blockIdx.x * blockDim.x + threadIdx.x; id < size; id += blockDim.x * gridDim.x) { | |||||
| output[id] = zero; | |||||
| } | |||||
| return; | |||||
| } | |||||
| template <typename T> | |||||
| void SquareSumAll(const size_t input_size_, const T* input_addr_0, const T* input_addr_1, | |||||
| T* output_addr_0, T* output_addr_1, cudaStream_t cuda_stream) { | |||||
| InitOutput<<<GET_BLOCKS(1), GET_THREADS, 0, cuda_stream>>>(1, output_addr_0); | |||||
| InitOutput<<<GET_BLOCKS(1), GET_THREADS, 0, cuda_stream>>>(1, output_addr_1); | |||||
| size_t size = input_size_ * 2; | |||||
| SquareSumAllKernel<<<GET_BLOCKS(size), GET_THREADS, 0, cuda_stream>>>(size, input_addr_0, input_addr_1, | |||||
| output_addr_0, output_addr_1); | |||||
| } | |||||
| template void SquareSumAll(const size_t input_size_, const half* input_addr_0, const half* input_addr_1, | |||||
| half* output_addr_0, half* output_addr_1, cudaStream_t cuda_stream); | |||||
| template void SquareSumAll(const size_t input_size_, const float* input_addr_0, const float* input_addr_1, | |||||
| float* output_addr_0, float* output_addr_1, cudaStream_t cuda_stream); | |||||
| @@ -0,0 +1,25 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_ | |||||
| #define MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_ | |||||
| #include "runtime/device/gpu/cuda_common.h" | |||||
| template <typename T> | |||||
| void SquareSumAll(const size_t input_size_, const T* input_addr_0, const T* input_addr_1, | |||||
| T* output_addr_0, T* output_addr_1, cudaStream_t cuda_stream); | |||||
| #endif // MINDSPORE_CCSRC_KERNEL_GPU_CUDA_IMP_SQUARE_SUM_ALL_IMPL_H_ | |||||
| @@ -0,0 +1,38 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "backend/kernel_compiler/gpu/math/square_sum_all_gpu_kernel.h" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| MS_REG_GPU_KERNEL_ONE(SquareSumAll, | |||||
| KernelAttr() | |||||
| .AddAllSameAttr(true) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddInputAttr(kNumberTypeFloat16) | |||||
| .AddOutputAttr(kNumberTypeFloat16) | |||||
| .AddOutputAttr(kNumberTypeFloat16), | |||||
| SquareSumAllGpuFwdKernel, half) | |||||
| MS_REG_GPU_KERNEL_ONE(SquareSumAll, | |||||
| KernelAttr() | |||||
| .AddAllSameAttr(true) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddInputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32) | |||||
| .AddOutputAttr(kNumberTypeFloat32), | |||||
| SquareSumAllGpuFwdKernel, float) | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,84 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_ | |||||
| #define MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_ | |||||
| #include <memory> | |||||
| #include <vector> | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel.h" | |||||
| #include "backend/kernel_compiler/gpu/gpu_kernel_factory.h" | |||||
| #include "backend/kernel_compiler/gpu/cuda_impl/square_sum_all_impl.cuh" | |||||
| namespace mindspore { | |||||
| namespace kernel { | |||||
| template <typename T> | |||||
| class SquareSumAllGpuFwdKernel : public GpuKernel { | |||||
| public: | |||||
| SquareSumAllGpuFwdKernel() : input_size_(1), is_null_input_(false) {} | |||||
| ~SquareSumAllGpuFwdKernel() override {} | |||||
| const std::vector<size_t> &GetInputSizeList() const override { return input_size_list_; } | |||||
| const std::vector<size_t> &GetOutputSizeList() const override { return output_size_list_; } | |||||
| const std::vector<size_t> &GetWorkspaceSizeList() const override { return workspace_size_list_; } | |||||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||||
| const std::vector<AddressPtr> &outputs, void *stream_ptr) override { | |||||
| if (is_null_input_) { | |||||
| return true; | |||||
| } | |||||
| T *input_addr_0 = GetDeviceAddress<T>(inputs, 0); | |||||
| T *input_addr_1 = GetDeviceAddress<T>(inputs, 1); | |||||
| T *output_addr_0 = GetDeviceAddress<T>(outputs, 0); | |||||
| T *output_addr_1 = GetDeviceAddress<T>(outputs, 1); | |||||
| SquareSumAll(input_size_, input_addr_0, input_addr_1, output_addr_0, output_addr_1, | |||||
| reinterpret_cast<cudaStream_t>(stream_ptr)); | |||||
| return true; | |||||
| } | |||||
| bool Init(const CNodePtr &kernel_node) override { | |||||
| auto input_shape = AnfAlgo::GetInputDeviceShape(kernel_node, 0); | |||||
| is_null_input_ = CHECK_NULL_INPUT(input_shape); | |||||
| if (is_null_input_) { | |||||
| MS_LOG(WARNING) << "SquareSumAllGpuFwdKernel input is null"; | |||||
| } | |||||
| for (size_t i = 0; i < input_shape.size(); i++) { | |||||
| input_size_ *= input_shape[i]; | |||||
| } | |||||
| InitSizeLists(); | |||||
| return true; | |||||
| } | |||||
| protected: | |||||
| void InitSizeLists() override { | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| input_size_list_.push_back(input_size_ * sizeof(T)); | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| output_size_list_.push_back(sizeof(T)); | |||||
| workspace_size_list_.push_back(0); | |||||
| } | |||||
| private: | |||||
| std::vector<size_t> input_size_list_; | |||||
| std::vector<size_t> output_size_list_; | |||||
| std::vector<size_t> workspace_size_list_; | |||||
| size_t input_size_; | |||||
| bool is_null_input_; | |||||
| }; | |||||
| } // namespace kernel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_BACKEND_KERNEL_COMPILER_GPU_SQUARE_SUM_ALL_GPU_KERNEL_H_ | |||||
| @@ -3688,8 +3688,8 @@ class SquareSumAll(PrimitiveWithInfer): | |||||
| def infer_dtype(self, x_type, y_type): | def infer_dtype(self, x_type, y_type): | ||||
| valid_types = (mstype.float16, mstype.float32) | valid_types = (mstype.float16, mstype.float32) | ||||
| validator.check_tensor_dtype_valid('x1_type', x_type, valid_types, self.name) | |||||
| validator.check_tensor_dtype_valid('x2_type', y_type, valid_types, self.name) | |||||
| args = {"x1_type": x_type, "x2_type": y_type} | |||||
| validator.check_tensors_dtypes_same_and_valid(args, valid_types, self.name) | |||||
| return x_type, y_type | return x_type, y_type | ||||