Merge pull request !6155 from byweng/mastertags/v1.0.0
| @@ -452,14 +452,14 @@ for eval_data in ds_eval.create_dict_iterator(): | |||||
| ### Examples | ### Examples | ||||
| Examples in [mindspore/tests/st/probability](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability) are as follows: | Examples in [mindspore/tests/st/probability](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability) are as follows: | ||||
| - [Bayesian LeNet](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_bnn_layer.py). How to construct and train a LeNet by bnn layers. | |||||
| - [Transform whole DNN model to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_model.py): How to transform whole DNN model to BNN. | |||||
| - [Transform DNN layer to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_transform_bnn_layer.py): How to transform one certainty type of layer in DNN model to corresponding Bayesian layer. | |||||
| - [Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_vae.py): Variational Auto-Encoder (VAE) model trained with MNIST to generate sample images. | |||||
| - [Conditional Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_svi_cvae.py): Conditional Variational Auto-Encoder (CVAE) model trained with MNIST to generate sample images. | |||||
| - [VAE-GAN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_gpu_vae_gan.py): VAE-GAN model trained with MNIST to generate sample images. | |||||
| - [Uncertainty Estimation](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/test_uncertainty.py): Evaluate uncertainty of model and data.. | |||||
| - [Bayesian LeNet](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/bnn_layers/test_bnn_layer.py). How to construct and train a LeNet by bnn layers. | |||||
| - [Transform whole DNN model to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/transforms/test_transform_bnn_model.py): How to transform whole DNN model to BNN. | |||||
| - [Transform DNN layer to BNN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/transforms/test_transform_bnn_layer.py): How to transform one certainty type of layer in DNN model to corresponding Bayesian layer. | |||||
| - [Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_svi_vae.py): Variational Auto-Encoder (VAE) model trained with MNIST to generate sample images. | |||||
| - [Conditional Variational Auto-Encoder](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_svi_cvae.py): Conditional Variational Auto-Encoder (CVAE) model trained with MNIST to generate sample images. | |||||
| - [VAE-GAN](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/dpn/test_gpu_vae_gan.py): VAE-GAN model trained with MNIST to generate sample images. | |||||
| - [Uncertainty Estimation](https://gitee.com/mindspore/mindspore/tree/master/tests/st/probability/toobox/test_uncertainty.py): Evaluate uncertainty of model and data.. | |||||
| ### Community | ### Community | ||||
| As part of MindSpore, we are committed to creating an open and friendly environment. | As part of MindSpore, we are committed to creating an open and friendly environment. | ||||
| - [Gitee](https://gitee.com/mindspore/mindspore/issues): Report bugs or make feature requests. | |||||
| - [Gitee](https://gitee.com/mindspore/mindspore/issues): Report bugs or make feature requests. | |||||
| @@ -0,0 +1,60 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ | |||||
| Produce the dataset | |||||
| """ | |||||
| import mindspore.dataset as ds | |||||
| import mindspore.dataset.vision.c_transforms as CV | |||||
| import mindspore.dataset.transforms.c_transforms as C | |||||
| from mindspore.dataset.vision import Inter | |||||
| from mindspore.common import dtype as mstype | |||||
| def create_dataset(data_path, batch_size=32, repeat_size=1, | |||||
| num_parallel_workers=1): | |||||
| """ | |||||
| create dataset for train or test | |||||
| """ | |||||
| # define dataset | |||||
| mnist_ds = ds.MnistDataset(data_path) | |||||
| resize_height, resize_width = 32, 32 | |||||
| rescale = 1.0 / 255.0 | |||||
| shift = 0.0 | |||||
| rescale_nml = 1 / 0.3081 | |||||
| shift_nml = -1 * 0.1307 / 0.3081 | |||||
| # define map operations | |||||
| resize_op = CV.Resize((resize_height, resize_width), interpolation=Inter.LINEAR) # Bilinear mode | |||||
| rescale_nml_op = CV.Rescale(rescale_nml, shift_nml) | |||||
| rescale_op = CV.Rescale(rescale, shift) | |||||
| hwc2chw_op = CV.HWC2CHW() | |||||
| type_cast_op = C.TypeCast(mstype.int32) | |||||
| # apply map operations on images | |||||
| mnist_ds = mnist_ds.map(operations=type_cast_op, input_columns="label", num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(operations=resize_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(operations=rescale_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(operations=rescale_nml_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||||
| mnist_ds = mnist_ds.map(operations=hwc2chw_op, input_columns="image", num_parallel_workers=num_parallel_workers) | |||||
| # apply DatasetOps | |||||
| buffer_size = 10000 | |||||
| mnist_ds = mnist_ds.shuffle(buffer_size=buffer_size) # 10000 as in LeNet train script | |||||
| mnist_ds = mnist_ds.batch(batch_size, drop_remainder=True) | |||||
| mnist_ds = mnist_ds.repeat(repeat_size) | |||||
| return mnist_ds | |||||