|
|
@@ -1,5 +1,5 @@ |
|
|
/** |
|
|
/** |
|
|
* Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
|
|
|
* Copyright 2020-2021 Huawei Technologies Co., Ltd |
|
|
* |
|
|
* |
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
* Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
* you may not use this file except in compliance with the License. |
|
|
* you may not use this file except in compliance with the License. |
|
|
@@ -23,65 +23,35 @@ |
|
|
#include "pybind11/pybind11.h" |
|
|
#include "pybind11/pybind11.h" |
|
|
#include "utils/ms_utils.h" |
|
|
#include "utils/ms_utils.h" |
|
|
#include "utils/shape_utils.h" |
|
|
#include "utils/shape_utils.h" |
|
|
#ifndef NO_DLIB |
|
|
|
|
|
#include "tdt/tsd_client.h" |
|
|
|
|
|
#include "tdt/tdt_host_interface.h" |
|
|
|
|
|
#include "tdt/data_common.h" |
|
|
|
|
|
#endif |
|
|
|
|
|
|
|
|
|
|
|
namespace py = pybind11; |
|
|
namespace py = pybind11; |
|
|
namespace mindspore { |
|
|
namespace mindspore { |
|
|
const char kShapeSeperator[] = ","; |
|
|
|
|
|
const char kShapeScalar[] = "[0]"; |
|
|
|
|
|
const char kShapeNone[] = "[]"; |
|
|
|
|
|
static std::map<std::string, TypeId> print_type_map = { |
|
|
|
|
|
{"int8_t", TypeId::kNumberTypeInt8}, {"uint8_t", TypeId::kNumberTypeUInt8}, |
|
|
|
|
|
{"int16_t", TypeId::kNumberTypeInt16}, {"uint16_t", TypeId::kNumberTypeUInt16}, |
|
|
|
|
|
{"int32_t", TypeId::kNumberTypeInt32}, {"uint32_t", TypeId::kNumberTypeUInt32}, |
|
|
|
|
|
{"int64_t", TypeId::kNumberTypeInt64}, {"uint64_t", TypeId::kNumberTypeUInt64}, |
|
|
|
|
|
{"float16", TypeId::kNumberTypeFloat16}, {"float", TypeId::kNumberTypeFloat32}, |
|
|
|
|
|
{"double", TypeId::kNumberTypeFloat64}, {"bool", TypeId::kNumberTypeBool}}; |
|
|
|
|
|
|
|
|
|
|
|
static std::map<std::string, size_t> type_size_map = { |
|
|
|
|
|
{"int8_t", sizeof(int8_t)}, {"uint8_t", sizeof(uint8_t)}, {"int16_t", sizeof(int16_t)}, |
|
|
|
|
|
{"uint16_t", sizeof(uint16_t)}, {"int32_t", sizeof(int32_t)}, {"uint32_t", sizeof(uint32_t)}, |
|
|
|
|
|
{"int64_t", sizeof(int64_t)}, {"uint64_t", sizeof(uint64_t)}, {"float16", sizeof(float) / 2}, |
|
|
|
|
|
{"float", sizeof(float)}, {"double", sizeof(double)}, {"bool", sizeof(bool)}}; |
|
|
|
|
|
|
|
|
#ifndef NO_DLIB |
|
|
|
|
|
static std::map<aclDataType, TypeId> print_acl_data_type_map = { |
|
|
|
|
|
{ACL_INT8, TypeId::kNumberTypeInt8}, {ACL_UINT8, TypeId::kNumberTypeUInt8}, |
|
|
|
|
|
{ACL_INT16, TypeId::kNumberTypeInt16}, {ACL_UINT16, TypeId::kNumberTypeUInt16}, |
|
|
|
|
|
{ACL_INT32, TypeId::kNumberTypeInt32}, {ACL_UINT32, TypeId::kNumberTypeUInt32}, |
|
|
|
|
|
{ACL_INT64, TypeId::kNumberTypeInt64}, {ACL_UINT64, TypeId::kNumberTypeUInt64}, |
|
|
|
|
|
{ACL_FLOAT16, TypeId::kNumberTypeFloat16}, {ACL_FLOAT, TypeId::kNumberTypeFloat32}, |
|
|
|
|
|
{ACL_DOUBLE, TypeId::kNumberTypeFloat64}, {ACL_BOOL, TypeId::kNumberTypeBool}}; |
|
|
|
|
|
|
|
|
std::string GetParseType(const std::string &tensorType_) { |
|
|
|
|
|
static const std::map<std::string, std::string> print_parse_map = { |
|
|
|
|
|
{"int8_t", "Int8"}, {"uint8_t", "Uint8"}, {"int16_t", "Int16"}, {"uint16_t", "Uint16"}, |
|
|
|
|
|
{"int32_t", "Int32"}, {"uint32_t", "Uint32"}, {"int64_t", "Int64"}, {"uint64_t", "Uint64"}, |
|
|
|
|
|
{"float16", "Float16"}, {"float", "Float32"}, {"double", "Float64"}, {"bool", "Bool"}}; |
|
|
|
|
|
auto type_iter = print_parse_map.find(tensorType_); |
|
|
|
|
|
if (type_iter == print_parse_map.end()) { |
|
|
|
|
|
MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << tensorType_; |
|
|
|
|
|
} |
|
|
|
|
|
return type_iter->second; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
static std::map<aclDataType, size_t> acl_data_type_size_map = { |
|
|
|
|
|
{ACL_INT8, sizeof(int8_t)}, {ACL_UINT8, sizeof(uint8_t)}, {ACL_INT16, sizeof(int16_t)}, |
|
|
|
|
|
{ACL_UINT16, sizeof(uint16_t)}, {ACL_INT32, sizeof(int32_t)}, {ACL_UINT32, sizeof(uint32_t)}, |
|
|
|
|
|
{ACL_INT64, sizeof(int64_t)}, {ACL_UINT64, sizeof(uint64_t)}, {ACL_FLOAT16, sizeof(float) / 2}, |
|
|
|
|
|
{ACL_FLOAT, sizeof(float)}, {ACL_DOUBLE, sizeof(double)}, {ACL_BOOL, sizeof(bool)}}; |
|
|
|
|
|
|
|
|
bool ParseTensorShape(const std::string &input_shape_str, ShapeVector *const tensor_shape, size_t *dims) { |
|
|
|
|
|
if (tensor_shape == nullptr) { |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(dims); |
|
|
|
|
|
std::string shape_str = input_shape_str; |
|
|
|
|
|
if (shape_str.size() <= 2) { |
|
|
|
|
|
return false; |
|
|
|
|
|
} |
|
|
|
|
|
(void)shape_str.erase(shape_str.begin()); |
|
|
|
|
|
shape_str.pop_back(); |
|
|
|
|
|
shape_str += kShapeSeperator; |
|
|
|
|
|
string::size_type pos_begin = 0; |
|
|
|
|
|
string::size_type pos_end = shape_str.find(kShapeSeperator); |
|
|
|
|
|
while (pos_end != std::string::npos) { |
|
|
|
|
|
string dim_str = shape_str.substr(pos_begin, pos_end - pos_begin); |
|
|
|
|
|
tensor_shape->emplace_back(std::stoi(dim_str)); |
|
|
|
|
|
(*dims) = (*dims) * std::stoul(dim_str); |
|
|
|
|
|
pos_begin = pos_end + sizeof(kShapeSeperator) - 1; |
|
|
|
|
|
pos_end = shape_str.find(kShapeSeperator, pos_begin); |
|
|
|
|
|
|
|
|
std::string GetParseType(const aclDataType &acl_data_type) { |
|
|
|
|
|
static const std::map<aclDataType, std::string> print_tensor_parse_map = { |
|
|
|
|
|
{ACL_INT8, "Int8"}, {ACL_UINT8, "Uint8"}, {ACL_INT16, "Int16"}, {ACL_UINT16, "Uint16"}, |
|
|
|
|
|
{ACL_INT32, "Int32"}, {ACL_UINT32, "Uint32"}, {ACL_INT64, "Int64"}, {ACL_UINT64, "Uint64"}, |
|
|
|
|
|
{ACL_FLOAT16, "Float16"}, {ACL_FLOAT, "Float32"}, {ACL_DOUBLE, "Float64"}, {ACL_BOOL, "Bool"}}; |
|
|
|
|
|
auto type_iter = print_tensor_parse_map.find(acl_data_type); |
|
|
|
|
|
if (type_iter == print_tensor_parse_map.end()) { |
|
|
|
|
|
MS_LOG(EXCEPTION) << "type of tensor need to print is not support " << acl_data_type; |
|
|
} |
|
|
} |
|
|
return true; |
|
|
|
|
|
|
|
|
return type_iter->second; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *const print_tensor, |
|
|
bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *const print_tensor, |
|
|
@@ -90,8 +60,11 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co |
|
|
MS_EXCEPTION_IF_NULL(print_tensor); |
|
|
MS_EXCEPTION_IF_NULL(print_tensor); |
|
|
auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c()); |
|
|
auto *tensor_data_ptr = static_cast<uint8_t *>(print_tensor->data_c()); |
|
|
MS_EXCEPTION_IF_NULL(tensor_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(tensor_data_ptr); |
|
|
auto cp_ret = |
|
|
|
|
|
memcpy_s(tensor_data_ptr, static_cast<size_t>(print_tensor->data().nbytes()), str_data_ptr, memory_size); |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t dest_size = static_cast<size_t>(print_tensor->data().nbytes()); |
|
|
|
|
|
size_t target_size = memory_size; |
|
|
|
|
|
|
|
|
|
|
|
auto cp_ret = memcpy_s(tensor_data_ptr, dest_size, str_data_ptr, target_size); |
|
|
if (cp_ret != EOK) { |
|
|
if (cp_ret != EOK) { |
|
|
MS_LOG(ERROR) << "Print op Failed to copy the memory to py::tensor " << cp_ret; |
|
|
MS_LOG(ERROR) << "Print op Failed to copy the memory to py::tensor " << cp_ret; |
|
|
return false; |
|
|
return false; |
|
|
@@ -100,10 +73,10 @@ bool PrintTensorToString(const char *str_data_ptr, mindspore::tensor::Tensor *co |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
template <typename T> |
|
|
template <typename T> |
|
|
void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { |
|
|
|
|
|
|
|
|
void PrintScalarToString(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) { |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
*buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value="; |
|
|
|
|
|
|
|
|
*buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value="; |
|
|
const T *data_ptr = reinterpret_cast<const T *>(str_data_ptr); |
|
|
const T *data_ptr = reinterpret_cast<const T *>(str_data_ptr); |
|
|
if constexpr (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) { |
|
|
if constexpr (std::is_same<T, int8_t>::value || std::is_same<T, uint8_t>::value) { |
|
|
const int int_data = static_cast<int>(*data_ptr); |
|
|
const int int_data = static_cast<int>(*data_ptr); |
|
|
@@ -113,11 +86,12 @@ void PrintScalarToString(const char *str_data_ptr, const string &tensor_type, st |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { |
|
|
|
|
|
|
|
|
void PrintScalarToBoolString(const char *str_data_ptr, const aclDataType &acl_data_type, |
|
|
|
|
|
std::ostringstream *const buf) { |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
const bool *data_ptr = reinterpret_cast<const bool *>(str_data_ptr); |
|
|
const bool *data_ptr = reinterpret_cast<const bool *>(str_data_ptr); |
|
|
*buf << "Tensor(shape=[], dtype=" << GetParseType(tensor_type) << ", value="; |
|
|
|
|
|
|
|
|
*buf << "Tensor(shape=[], dtype=" << GetParseType(acl_data_type) << ", value="; |
|
|
if (*data_ptr) { |
|
|
if (*data_ptr) { |
|
|
*buf << "True)\n"; |
|
|
*buf << "True)\n"; |
|
|
} else { |
|
|
} else { |
|
|
@@ -125,89 +99,99 @@ void PrintScalarToBoolString(const char *str_data_ptr, const string &tensor_type |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
void convertDataItem2Scalar(const char *str_data_ptr, const string &tensor_type, std::ostringstream *const buf) { |
|
|
|
|
|
|
|
|
void convertDataItem2Scalar(const char *str_data_ptr, const aclDataType &acl_data_type, std::ostringstream *const buf) { |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
MS_EXCEPTION_IF_NULL(buf); |
|
|
auto type_iter = print_type_map.find(tensor_type); |
|
|
|
|
|
|
|
|
auto type_iter = print_acl_data_type_map.find(acl_data_type); |
|
|
auto type_id = type_iter->second; |
|
|
auto type_id = type_iter->second; |
|
|
if (type_id == TypeId::kNumberTypeBool) { |
|
|
if (type_id == TypeId::kNumberTypeBool) { |
|
|
PrintScalarToBoolString(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToBoolString(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeInt8) { |
|
|
} else if (type_id == TypeId::kNumberTypeInt8) { |
|
|
PrintScalarToString<int8_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<int8_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeUInt8) { |
|
|
} else if (type_id == TypeId::kNumberTypeUInt8) { |
|
|
PrintScalarToString<uint8_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<uint8_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeInt16) { |
|
|
} else if (type_id == TypeId::kNumberTypeInt16) { |
|
|
PrintScalarToString<int16_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<int16_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeUInt16) { |
|
|
} else if (type_id == TypeId::kNumberTypeUInt16) { |
|
|
PrintScalarToString<uint16_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<uint16_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeInt32) { |
|
|
} else if (type_id == TypeId::kNumberTypeInt32) { |
|
|
PrintScalarToString<int32_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<int32_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeUInt32) { |
|
|
} else if (type_id == TypeId::kNumberTypeUInt32) { |
|
|
PrintScalarToString<uint32_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<uint32_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeInt64) { |
|
|
} else if (type_id == TypeId::kNumberTypeInt64) { |
|
|
PrintScalarToString<int64_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<int64_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeUInt64) { |
|
|
} else if (type_id == TypeId::kNumberTypeUInt64) { |
|
|
PrintScalarToString<uint64_t>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<uint64_t>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeFloat16) { |
|
|
} else if (type_id == TypeId::kNumberTypeFloat16) { |
|
|
PrintScalarToString<float16>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<float16>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeFloat32) { |
|
|
} else if (type_id == TypeId::kNumberTypeFloat32) { |
|
|
PrintScalarToString<float>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<float>(str_data_ptr, acl_data_type, buf); |
|
|
} else if (type_id == TypeId::kNumberTypeFloat64) { |
|
|
} else if (type_id == TypeId::kNumberTypeFloat64) { |
|
|
PrintScalarToString<double>(str_data_ptr, tensor_type, buf); |
|
|
|
|
|
|
|
|
PrintScalarToString<double>(str_data_ptr, acl_data_type, buf); |
|
|
} else { |
|
|
} else { |
|
|
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << tensor_type << "."; |
|
|
|
|
|
|
|
|
MS_LOG(EXCEPTION) << "Cannot print scalar because of unsupported data type: " << GetParseType(acl_data_type) << "."; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
bool judgeLengthValid(const size_t str_len, const string &tensor_type) { |
|
|
|
|
|
auto type_iter = type_size_map.find(tensor_type); |
|
|
|
|
|
if (type_iter == type_size_map.end()) { |
|
|
|
|
|
|
|
|
bool judgeLengthValid(const size_t str_len, const aclDataType &acl_data_type) { |
|
|
|
|
|
auto type_iter = acl_data_type_size_map.find(acl_data_type); |
|
|
|
|
|
if (type_iter == acl_data_type_size_map.end()) { |
|
|
MS_LOG(EXCEPTION) << "type of scalar to print is not support."; |
|
|
MS_LOG(EXCEPTION) << "type of scalar to print is not support."; |
|
|
} |
|
|
} |
|
|
return str_len == type_iter->second; |
|
|
return str_len == type_iter->second; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
#ifndef NO_DLIB |
|
|
|
|
|
bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) { |
|
|
|
|
|
|
|
|
bool ConvertDataset2Tensor(acltdtDataset *acl_dataset) { |
|
|
// Acquire Python GIL |
|
|
// Acquire Python GIL |
|
|
py::gil_scoped_acquire gil_acquire; |
|
|
py::gil_scoped_acquire gil_acquire; |
|
|
std::ostringstream buf; |
|
|
std::ostringstream buf; |
|
|
bool ret_end_sequence = false; |
|
|
bool ret_end_sequence = false; |
|
|
for (auto &item : items) { |
|
|
|
|
|
if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t acl_dataset_size = acltdtGetDatasetSize(acl_dataset); |
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < acl_dataset_size; i++) { |
|
|
|
|
|
acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i); |
|
|
|
|
|
if (acltdtGetTensorTypeFromItem(item) == ACL_TENSOR_DATA_END_OF_SEQUENCE) { |
|
|
ret_end_sequence = true; |
|
|
ret_end_sequence = true; |
|
|
|
|
|
MS_LOG(INFO) << "end of sequence" << std::endl; |
|
|
break; |
|
|
break; |
|
|
} |
|
|
} |
|
|
std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_); |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
|
|
|
if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) { |
|
|
|
|
|
if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) { |
|
|
|
|
|
MS_LOG(EXCEPTION) << "Print op receive data length is invalid."; |
|
|
|
|
|
} |
|
|
|
|
|
convertDataItem2Scalar(str_data_ptr->data(), item.tensorType_, &buf); |
|
|
|
|
|
continue; |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
size_t dim_num = acltdtGetDimNumFromItem(item); |
|
|
|
|
|
void *acl_addr = acltdtGetDataAddrFromItem(item); |
|
|
|
|
|
size_t acl_data_size = acltdtGetDataSizeFromItem(item); |
|
|
|
|
|
aclDataType acl_data_type = acltdtGetDataTypeFromItem(item); |
|
|
|
|
|
char *acl_data = reinterpret_cast<char *>(acl_addr); |
|
|
|
|
|
acl_data = const_cast<char *>(reinterpret_cast<std::string *>(acl_data)->c_str()); |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(acl_data); |
|
|
|
|
|
|
|
|
|
|
|
ShapeVector tensorShape; |
|
|
|
|
|
tensorShape.resize(dim_num); |
|
|
|
|
|
|
|
|
|
|
|
if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) { |
|
|
|
|
|
MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data"; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
ShapeVector tensor_shape; |
|
|
|
|
|
size_t totaldims = 1; |
|
|
|
|
|
if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) { |
|
|
|
|
|
MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_; |
|
|
|
|
|
|
|
|
if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) { |
|
|
|
|
|
if (!judgeLengthValid(acl_data_size, acl_data_type)) { |
|
|
|
|
|
MS_LOG(EXCEPTION) << "Print op receive data length is invalid."; |
|
|
|
|
|
} |
|
|
|
|
|
convertDataItem2Scalar(acl_data, acl_data_type, &buf); |
|
|
continue; |
|
|
continue; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
if (item.tensorType_ == "string") { |
|
|
|
|
|
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); |
|
|
|
|
|
|
|
|
if (acl_data_type == ACL_STRING) { |
|
|
|
|
|
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); |
|
|
buf << data << std::endl; |
|
|
buf << data << std::endl; |
|
|
} else { |
|
|
} else { |
|
|
auto type_iter = print_type_map.find(item.tensorType_); |
|
|
|
|
|
if (type_iter == print_type_map.end()) { |
|
|
|
|
|
MS_LOG(ERROR) << "type of tensor need to print is not support " << item.tensorType_; |
|
|
|
|
|
|
|
|
auto type_iter = print_acl_data_type_map.find(acl_data_type); |
|
|
|
|
|
if (type_iter == print_acl_data_type_map.end()) { |
|
|
|
|
|
MS_LOG(ERROR) << "type of tensor need to print is not support " << GetParseType(acl_data_type); |
|
|
continue; |
|
|
continue; |
|
|
} |
|
|
} |
|
|
auto type_id = type_iter->second; |
|
|
auto type_id = type_iter->second; |
|
|
mindspore::tensor::Tensor print_tensor(type_id, tensor_shape); |
|
|
|
|
|
auto memory_size = totaldims * type_size_map[item.tensorType_]; |
|
|
|
|
|
if (PrintTensorToString(str_data_ptr->data(), &print_tensor, memory_size)) { |
|
|
|
|
|
|
|
|
mindspore::tensor::Tensor print_tensor(type_id, tensorShape); |
|
|
|
|
|
if (PrintTensorToString(acl_data, &print_tensor, acl_data_size)) { |
|
|
buf << print_tensor.ToStringNoLimit() << std::endl; |
|
|
buf << print_tensor.ToStringNoLimit() << std::endl; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
@@ -216,44 +200,63 @@ bool ConvertDataItem2Tensor(const std::vector<tdt::DataItem> &items) { |
|
|
return ret_end_sequence; |
|
|
return ret_end_sequence; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
bool SaveDataItem2File(const std::vector<tdt::DataItem> &items, const std::string &print_file_path, prntpb::Print print, |
|
|
|
|
|
std::fstream *output) { |
|
|
|
|
|
|
|
|
bool SaveDataset2File(acltdtDataset *acl_dataset, const std::string &print_file_path, prntpb::Print print, |
|
|
|
|
|
std::fstream *output) { |
|
|
bool ret_end_thread = false; |
|
|
bool ret_end_thread = false; |
|
|
for (auto &item : items) { |
|
|
|
|
|
if (item.dataType_ == tdt::TDT_END_OF_SEQUENCE) { |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for (size_t i = 0; i < acltdtGetDatasetSize(acl_dataset); i++) { |
|
|
|
|
|
acltdtDataItem *item = acltdtGetDataItem(acl_dataset, i); |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(item); |
|
|
|
|
|
acltdtTensorType acl_tensor_type = acltdtGetTensorTypeFromItem(item); |
|
|
|
|
|
|
|
|
|
|
|
if (acl_tensor_type == ACL_TENSOR_DATA_END_OF_SEQUENCE) { |
|
|
|
|
|
MS_LOG(INFO) << "Acl channel received end-of-sequence for print op."; |
|
|
ret_end_thread = true; |
|
|
ret_end_thread = true; |
|
|
break; |
|
|
break; |
|
|
|
|
|
} else if (acl_tensor_type == ACL_TENSOR_DATA_ABNORMAL) { |
|
|
|
|
|
MS_LOG(INFO) << "Acl channel received abnormal for print op."; |
|
|
|
|
|
return true; |
|
|
|
|
|
} else if (acl_tensor_type == ACL_TENSOR_DATA_UNDEFINED) { |
|
|
|
|
|
MS_LOG(INFO) << "Acl channel received undefined message type for print op."; |
|
|
|
|
|
return false; |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
prntpb::Print_Value *value = print.add_value(); |
|
|
prntpb::Print_Value *value = print.add_value(); |
|
|
std::shared_ptr<std::string> str_data_ptr = std::static_pointer_cast<std::string>(item.dataPtr_); |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(str_data_ptr); |
|
|
|
|
|
if (item.tensorShape_ == kShapeScalar || item.tensorShape_ == kShapeNone) { |
|
|
|
|
|
if (!judgeLengthValid(str_data_ptr->size(), item.tensorType_)) { |
|
|
|
|
|
|
|
|
size_t dim_num = acltdtGetDimNumFromItem(item); |
|
|
|
|
|
void *acl_addr = acltdtGetDataAddrFromItem(item); |
|
|
|
|
|
size_t acl_data_size = acltdtGetDataSizeFromItem(item); |
|
|
|
|
|
aclDataType acl_data_type = acltdtGetDataTypeFromItem(item); |
|
|
|
|
|
char *acl_data = reinterpret_cast<char *>(acl_addr); |
|
|
|
|
|
MS_EXCEPTION_IF_NULL(acl_data); |
|
|
|
|
|
|
|
|
|
|
|
ShapeVector tensorShape; |
|
|
|
|
|
tensorShape.resize(dim_num); |
|
|
|
|
|
|
|
|
|
|
|
if (acltdtGetDimsFromItem(item, tensorShape.data(), dim_num) != ACL_SUCCESS) { |
|
|
|
|
|
MS_LOG(ERROR) << "ACL failed get dim-size from acl channel data"; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if ((tensorShape.size() == 1 && tensorShape[0] == 0) || tensorShape.size() == 0) { |
|
|
|
|
|
if (!judgeLengthValid(acl_data_size, acl_data_type)) { |
|
|
MS_LOG(ERROR) << "Print op receive data length is invalid."; |
|
|
MS_LOG(ERROR) << "Print op receive data length is invalid."; |
|
|
ret_end_thread = true; |
|
|
ret_end_thread = true; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
ShapeVector tensor_shape; |
|
|
|
|
|
size_t totaldims = 1; |
|
|
|
|
|
if (!ParseTensorShape(item.tensorShape_, &tensor_shape, &totaldims)) { |
|
|
|
|
|
MS_LOG(ERROR) << "Tensor print can not parse tensor shape, receive info" << item.tensorShape_; |
|
|
|
|
|
ret_end_thread = true; |
|
|
|
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
if (item.tensorType_ == "string") { |
|
|
|
|
|
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); |
|
|
|
|
|
|
|
|
if (acl_data_type == ACL_STRING) { |
|
|
|
|
|
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); |
|
|
value->set_desc(data); |
|
|
value->set_desc(data); |
|
|
} else { |
|
|
} else { |
|
|
auto parse_type = GetParseType(item.tensorType_); |
|
|
|
|
|
|
|
|
auto parse_type = GetParseType(acl_data_type); |
|
|
prntpb::TensorProto *tensor = value->mutable_tensor(); |
|
|
prntpb::TensorProto *tensor = value->mutable_tensor(); |
|
|
if (!(item.tensorShape_ == kShapeScalar) && !(item.tensorShape_ == kShapeNone)) { |
|
|
|
|
|
for (const auto &dim : tensor_shape) { |
|
|
|
|
|
|
|
|
if (tensorShape.size() > 1 || (tensorShape.size() == 1 && tensorShape[0] != 1)) { |
|
|
|
|
|
for (const auto &dim : tensorShape) { |
|
|
tensor->add_dims(static_cast<::google::protobuf::int64>(dim)); |
|
|
tensor->add_dims(static_cast<::google::protobuf::int64>(dim)); |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
tensor->set_tensor_type(parse_type); |
|
|
tensor->set_tensor_type(parse_type); |
|
|
std::string data(reinterpret_cast<const char *>(str_data_ptr->c_str()), item.dataLen_); |
|
|
|
|
|
|
|
|
std::string data(reinterpret_cast<const char *>(acl_data), acl_data_size); |
|
|
tensor->set_tensor_content(data); |
|
|
tensor->set_tensor_content(data); |
|
|
} |
|
|
} |
|
|
|
|
|
|
|
|
@@ -274,29 +277,37 @@ void TensorPrint::operator()() { |
|
|
std::string print_file_path = ms_context->get_param<std::string>(MS_CTX_PRINT_FILE_PATH); |
|
|
std::string print_file_path = ms_context->get_param<std::string>(MS_CTX_PRINT_FILE_PATH); |
|
|
if (print_file_path == "") { |
|
|
if (print_file_path == "") { |
|
|
while (true) { |
|
|
while (true) { |
|
|
std::vector<tdt::DataItem> bundle; |
|
|
|
|
|
if (tdt::TdtHostPopData("_npu_log", bundle) != 0) { |
|
|
|
|
|
|
|
|
acltdtDataset *acl_dataset = acltdtCreateDataset(); |
|
|
|
|
|
if (acl_dataset == nullptr) { |
|
|
|
|
|
MS_LOG(ERROR) << "Failed create acl dateaset."; |
|
|
|
|
|
} |
|
|
|
|
|
if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) { |
|
|
|
|
|
MS_LOG(ERROR) << "Acltdt receive tensor failed"; |
|
|
break; |
|
|
break; |
|
|
} |
|
|
} |
|
|
if (ConvertDataItem2Tensor(bundle)) { |
|
|
|
|
|
|
|
|
if (ConvertDataset2Tensor(acl_dataset)) { |
|
|
break; |
|
|
break; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
} else { |
|
|
} else { |
|
|
std::fstream output(print_file_path, std::ios::out | std::ios::trunc | std::ios::binary); |
|
|
std::fstream output(print_file_path, std::ios::out | std::ios::trunc | std::ios::binary); |
|
|
while (true) { |
|
|
while (true) { |
|
|
std::vector<tdt::DataItem> bundle; |
|
|
|
|
|
if (tdt::TdtHostPopData("_npu_log", bundle) != 0) { |
|
|
|
|
|
|
|
|
acltdtDataset *acl_dataset = acltdtCreateDataset(); |
|
|
|
|
|
if (acl_dataset == nullptr) { |
|
|
|
|
|
MS_LOG(ERROR) << "Failed create acl dateaset."; |
|
|
|
|
|
} |
|
|
|
|
|
if (acltdtReceiveTensor(acl_handle_, acl_dataset, -1 /* no timeout */) != ACL_SUCCESS) { |
|
|
|
|
|
MS_LOG(ERROR) << "Acltdt receive tensor failed"; |
|
|
break; |
|
|
break; |
|
|
} |
|
|
} |
|
|
if (SaveDataItem2File(bundle, print_file_path, print, &output)) { |
|
|
|
|
|
|
|
|
if (SaveDataset2File(acl_dataset, print_file_path, print, &output)) { |
|
|
break; |
|
|
break; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
output.close(); |
|
|
output.close(); |
|
|
std::string path_string = print_file_path; |
|
|
std::string path_string = print_file_path; |
|
|
if (chmod(common::SafeCStr(path_string), S_IRUSR) == -1) { |
|
|
if (chmod(common::SafeCStr(path_string), S_IRUSR) == -1) { |
|
|
MS_LOG(ERROR) << "Modify file:" << print_file_path << " to r fail."; |
|
|
|
|
|
|
|
|
MS_LOG(ERROR) << "Modify file:" << print_file_path << " to fail."; |
|
|
return; |
|
|
return; |
|
|
} |
|
|
} |
|
|
} |
|
|
} |
|
|
|