|
|
|
@@ -0,0 +1,51 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""export ckpt to model""" |
|
|
|
import argparse |
|
|
|
import numpy as np |
|
|
|
|
|
|
|
from mindspore import context, Tensor |
|
|
|
from mindspore.train.serialization import export, load_checkpoint |
|
|
|
|
|
|
|
from src.autodis import ModelBuilder |
|
|
|
from src.config import DataConfig, ModelConfig, TrainConfig |
|
|
|
|
|
|
|
parser = argparse.ArgumentParser(description="autodis export") |
|
|
|
parser.add_argument("--device_id", type=int, default=0, help="Device id") |
|
|
|
parser.add_argument("--batch_size", type=int, default=16000, help="batch size") |
|
|
|
parser.add_argument("--ckpt_file", type=str, required=True, help="Checkpoint file path.") |
|
|
|
parser.add_argument("--file_name", type=str, default="autodis", help="output file name.") |
|
|
|
parser.add_argument("--file_format", type=str, choices=["AIR", "ONNX", "MINDIR"], default="AIR", help="file format") |
|
|
|
parser.add_argument("--device_target", type=str, choices=["Ascend"], default="Ascend", |
|
|
|
help="device target") |
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target=args.device_target, device_id=args.device_id) |
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
data_config = DataConfig() |
|
|
|
|
|
|
|
model_builder = ModelBuilder(ModelConfig, TrainConfig) |
|
|
|
_, network = model_builder.get_train_eval_net() |
|
|
|
network.set_train(False) |
|
|
|
|
|
|
|
load_checkpoint(args.ckpt_file, net=network) |
|
|
|
|
|
|
|
batch_ids = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.int32)) |
|
|
|
batch_wts = Tensor(np.zeros([data_config.batch_size, data_config.data_field_size]).astype(np.float32)) |
|
|
|
labels = Tensor(np.zeros([data_config.batch_size, 1]).astype(np.float32)) |
|
|
|
|
|
|
|
input_data = [batch_ids, batch_wts, labels] |
|
|
|
export(network, *input_data, file_name=args.file_name, file_format=args.file_format) |