|
|
@@ -0,0 +1,155 @@ |
|
|
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
|
|
# |
|
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
|
|
# You may obtain a copy of the License at |
|
|
|
|
|
# |
|
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
|
|
# |
|
|
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
|
|
# limitations under the License. |
|
|
|
|
|
# ============================================================================ |
|
|
|
|
|
import pytest |
|
|
|
|
|
import numpy as np |
|
|
|
|
|
import time, math |
|
|
|
|
|
import mindspore.nn as nn |
|
|
|
|
|
from mindspore import context, Tensor, ParameterTuple |
|
|
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
from mindspore.common.initializer import TruncatedNormal |
|
|
|
|
|
from mindspore.ops import functional as F |
|
|
|
|
|
from mindspore.ops import composite as C |
|
|
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
|
|
|
|
|
|
|
|
from mindspore.nn.wrap.cell_wrapper import WithLossCell |
|
|
|
|
|
from mindspore.nn.optim import Momentum |
|
|
|
|
|
|
|
|
|
|
|
np.random.seed(1) |
|
|
|
|
|
|
|
|
|
|
|
def weight_variable(): |
|
|
|
|
|
"""weight initial""" |
|
|
|
|
|
return TruncatedNormal(0.02) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def conv(in_channels, out_channels, kernel_size, stride=1, padding=0): |
|
|
|
|
|
"""weight initial for conv layer""" |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
return nn.Conv2d(in_channels, out_channels, |
|
|
|
|
|
kernel_size=kernel_size, stride=stride, padding=padding, |
|
|
|
|
|
weight_init=weight, has_bias=False, pad_mode="valid") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_initialize(input_channels, out_channels): |
|
|
|
|
|
"""weight initial for fc layer""" |
|
|
|
|
|
weight = weight_variable() |
|
|
|
|
|
bias = weight_variable() |
|
|
|
|
|
return nn.Dense(input_channels, out_channels, weight, bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LeNet(nn.Cell): |
|
|
|
|
|
""" |
|
|
|
|
|
Lenet network |
|
|
|
|
|
Args: |
|
|
|
|
|
num_class (int): Num classes, Default: 10. |
|
|
|
|
|
Returns: |
|
|
|
|
|
Tensor, output tensor |
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> LeNet(num_class=10) |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, num_class=10): |
|
|
|
|
|
super(LeNet, self).__init__() |
|
|
|
|
|
self.num_class = num_class |
|
|
|
|
|
self.batch_size = 32 |
|
|
|
|
|
self.conv1 = conv(1, 6, 5) |
|
|
|
|
|
self.conv2 = conv(6, 16, 5) |
|
|
|
|
|
self.fc1 = fc_with_initialize(16 * 5 * 5, 120) |
|
|
|
|
|
self.fc2 = fc_with_initialize(120, 84) |
|
|
|
|
|
self.fc3 = fc_with_initialize(84, self.num_class) |
|
|
|
|
|
self.relu = nn.ReLU() |
|
|
|
|
|
self.max_pool2d = nn.MaxPool2d(kernel_size=2, stride=2) |
|
|
|
|
|
self.reshape = P.Reshape() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x): |
|
|
|
|
|
x = self.conv1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.conv2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.max_pool2d(x) |
|
|
|
|
|
x = self.reshape(x, (self.batch_size, -1)) |
|
|
|
|
|
x = self.fc1(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc2(x) |
|
|
|
|
|
x = self.relu(x) |
|
|
|
|
|
x = self.fc3(x) |
|
|
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class CrossEntropyLoss(nn.Cell): |
|
|
|
|
|
""" |
|
|
|
|
|
Define loss for network |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super(CrossEntropyLoss, self).__init__() |
|
|
|
|
|
self.cross_entropy = P.SoftmaxCrossEntropyWithLogits() |
|
|
|
|
|
self.mean = P.ReduceMean() |
|
|
|
|
|
self.one_hot = P.OneHot() |
|
|
|
|
|
self.on_value = Tensor(1.0, mstype.float32) |
|
|
|
|
|
self.off_value = Tensor(0.0, mstype.float32) |
|
|
|
|
|
self.num = Tensor(32.0, mstype.float32) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, logits, label): |
|
|
|
|
|
label = self.one_hot(label, F.shape(logits)[1], self.on_value, self.off_value) |
|
|
|
|
|
loss = self.cross_entropy(logits, label)[0] |
|
|
|
|
|
loss = P.RealDiv()(P.ReduceSum()(loss, -1), self.num) |
|
|
|
|
|
return loss |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GradWrap(nn.Cell): |
|
|
|
|
|
""" |
|
|
|
|
|
GradWrap definition |
|
|
|
|
|
""" |
|
|
|
|
|
def __init__(self, network): |
|
|
|
|
|
super(GradWrap, self).__init__() |
|
|
|
|
|
self.network = network |
|
|
|
|
|
self.weights = ParameterTuple(filter(lambda x: x.requires_grad, network.get_parameters())) |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x, label): |
|
|
|
|
|
weights = self.weights |
|
|
|
|
|
return C.grad_by_list(self.network, weights)(x, label) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
|
|
@pytest.mark.env_single |
|
|
|
|
|
def test_ascend_pynative_lenet(): |
|
|
|
|
|
context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") |
|
|
|
|
|
|
|
|
|
|
|
epoch_size = 20 |
|
|
|
|
|
batch_size = 32 |
|
|
|
|
|
inputs = Tensor(np.ones([batch_size, 1, 32, 32]).astype(np.float32)) |
|
|
|
|
|
labels = Tensor(np.ones([batch_size]).astype(np.int32)) |
|
|
|
|
|
|
|
|
|
|
|
net = LeNet() |
|
|
|
|
|
criterion = CrossEntropyLoss() |
|
|
|
|
|
optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), 0.1, 0.9) |
|
|
|
|
|
|
|
|
|
|
|
net_with_criterion = WithLossCell(net, criterion) |
|
|
|
|
|
train_network = GradWrap(net_with_criterion) |
|
|
|
|
|
train_network.set_train() |
|
|
|
|
|
total_time = 0 |
|
|
|
|
|
|
|
|
|
|
|
for epoch in range(0, epoch_size): |
|
|
|
|
|
start_time = time.time() |
|
|
|
|
|
fw_output = net(inputs) |
|
|
|
|
|
loss_output = criterion(fw_output, labels) |
|
|
|
|
|
grads = train_network(inputs, labels) |
|
|
|
|
|
success = optimizer(grads) |
|
|
|
|
|
end_time = time.time() |
|
|
|
|
|
cost_time = end_time - start_time |
|
|
|
|
|
total_time = total_time + cost_time |
|
|
|
|
|
assert(total_time < 20.0) |
|
|
|
|
|
assert(loss_output.asnumpy() < 0.01) |
|
|
|
|
|
|