Browse Source

!559 Add Fill/Erf op for VM.

Merge pull request !559 from liuxiao/fill-op
tags/v0.2.0-alpha
mindspore-ci-bot Gitee 5 years ago
parent
commit
1a0d2666b7
10 changed files with 153 additions and 1 deletions
  1. +1
    -0
      mindspore/ccsrc/kernel/tbe/tbe_adapter.cc
  2. +1
    -0
      mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc
  3. +1
    -0
      mindspore/ccsrc/utils/utils.h
  4. +18
    -0
      mindspore/ops/_grad/grad_math_ops.py
  5. +2
    -0
      mindspore/ops/_op_impl/tbe/__init__.py
  6. +39
    -0
      mindspore/ops/_op_impl/tbe/erf.py
  7. +55
    -0
      mindspore/ops/_op_impl/tbe/fill_d.py
  8. +2
    -1
      mindspore/ops/operations/__init__.py
  9. +30
    -0
      mindspore/ops/operations/math_ops.py
  10. +4
    -0
      tests/ut/python/ops/test_ops.py

+ 1
- 0
mindspore/ccsrc/kernel/tbe/tbe_adapter.cc View File

@@ -57,6 +57,7 @@ static std::map<string, string> tbe_func_adapter_map = {
{"strided_slice", "strided_slice_d"},
{"strided_slice_grad", "strided_slice_grad_d"},
{"transpose", "transpose_d"},
{"fill", "fill_d"},
{"unsorted_segment_sum", "unsorted_segment_sum_d"},
{"concat", "concat_d"},
{"slice", "slice_d"},


+ 1
- 0
mindspore/ccsrc/pre_activate/pass/const_input_to_attr_registry.cc View File

@@ -53,6 +53,7 @@ ConstInputToAttrInfoRegistry::ConstInputToAttrInfoRegistry() {
Register(kExpandDimsOpName, {1});
Register(kSplitOpName, {0});
Register(kTopKOpName, {1});
Register(kErfOpName, {1});
Register(kSparseApplyAdagradOpName, {2});
Register(kResizeNearestNeighborGrad, {1});
}


+ 1
- 0
mindspore/ccsrc/utils/utils.h View File

@@ -92,6 +92,7 @@ constexpr auto kClipByNormNoDivSumOpName = "ClipByNormNoDivSum";
constexpr auto kGreaterOpName = "Greater";
constexpr auto kSqrtOpName = "Sqrt";
constexpr auto kRsqrtOpName = "Rsqrt";
constexpr auto kErfOpName = "Erf";
constexpr auto kRealDivOpName = "RealDiv";
constexpr auto kLambUpdateWithLROpName = "LambUpdateWithLR";
constexpr auto kLambNextMVWithDecayOpName = "LambNextMVWithDecay";


+ 18
- 0
mindspore/ops/_grad/grad_math_ops.py View File

@@ -17,6 +17,7 @@


from functools import reduce
import numpy as np
from .. import functional as F
from .. import operations as P
from ..operations import _grad_ops as G
@@ -333,6 +334,23 @@ def get_bprop_log(self):
return bprop


@bprop_getters.register(P.Erf)
def get_bprop_erf(self):
"""Grad definition for `Erf` operation."""
exp = P.Exp()
square = P.Square()
sqrt = P.Sqrt()
cast = P.Cast()
dtype = P.DType()

def bprop(x, out, dout):
half_root_pi = cast(2 / sqrt(F.scalar_to_tensor(np.pi)), dtype(x))
x_square = square(x)
dx = dout * half_root_pi * exp(-x_square)
return (dx,)
return bprop


@bprop_getters.register(P.Pow)
def get_bprop_pow(self):
"""Grad definition for `Pow` operation."""


+ 2
- 0
mindspore/ops/_op_impl/tbe/__init__.py View File

@@ -139,6 +139,8 @@ from .smooth_l1_loss_grad import _smooth_l1_loss_grad_tbe
from .fused_mul_add import _fused_mul_add_tbe
from .fused_mul_add_n import _fused_mul_add_n_tbe
from .fused_mul_apply_momentum import _fused_mul_apply_momentum_tbe
from .fill_d import _fill_d_op_tbe
from .erf import _erf_op_tbe
from .depthwise_conv2d import _depthwise_conv2d_tbe
from .depthwise_conv2d_backprop_filter import _depthwise_conv2d_backprop_filter_tbe
from .depthwise_conv2d_backprop_input import _depthwise_conv2d_backprop_input_tbe

+ 39
- 0
mindspore/ops/_op_impl/tbe/erf.py View File

@@ -0,0 +1,39 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Erf op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType

erf_op_info = TBERegOp("Erf") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("erf.so") \
.compute_cost(10) \
.kernel_name("erf") \
.partial_flag(True) \
.op_pattern("formatAgnostic") \
.input(0, "x", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.get_op_info()


@op_info_register(erf_op_info)
def _erf_op_tbe():
"""Erf TBE register"""
return

+ 55
- 0
mindspore/ops/_op_impl/tbe/fill_d.py View File

@@ -0,0 +1,55 @@
# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""FillD op"""
from mindspore.ops.op_info_register import op_info_register, TBERegOp, DataType

fill_d_op_info = TBERegOp("FillD") \
.fusion_type("ELEMWISE") \
.async_flag(False) \
.binfile_name("fill_d.so") \
.compute_cost(10) \
.kernel_name("fill_d") \
.partial_flag(True) \
.attr("dims", "required", "listInt", "all") \
.input(0, "value", False, "required", "all") \
.output(0, "y", False, "required", "all") \
.dtype_format(DataType.F16_5HD, DataType.F16_5HD) \
.dtype_format(DataType.F16_FracZ, DataType.F16_FracZ) \
.dtype_format(DataType.F16_C1HWNCoC0, DataType.F16_C1HWNCoC0) \
.dtype_format(DataType.F16_Default, DataType.F16_Default) \
.dtype_format(DataType.F32_5HD, DataType.F32_5HD) \
.dtype_format(DataType.F32_FracZ, DataType.F32_FracZ) \
.dtype_format(DataType.F32_C1HWNCoC0, DataType.F32_C1HWNCoC0) \
.dtype_format(DataType.F32_Default, DataType.F32_Default) \
.dtype_format(DataType.I32_5HD, DataType.I32_5HD) \
.dtype_format(DataType.I32_FracZ, DataType.I32_FracZ) \
.dtype_format(DataType.I32_C1HWNCoC0, DataType.I32_C1HWNCoC0) \
.dtype_format(DataType.I32_Default, DataType.I32_Default) \
.dtype_format(DataType.I8_5HD, DataType.I8_5HD) \
.dtype_format(DataType.I8_FracZ, DataType.I8_FracZ) \
.dtype_format(DataType.I8_C1HWNCoC0, DataType.I8_C1HWNCoC0) \
.dtype_format(DataType.I8_Default, DataType.I8_Default) \
.dtype_format(DataType.U8_5HD, DataType.U8_5HD) \
.dtype_format(DataType.U8_FracZ, DataType.U8_FracZ) \
.dtype_format(DataType.U8_C1HWNCoC0, DataType.U8_C1HWNCoC0) \
.dtype_format(DataType.U8_Default, DataType.U8_Default) \
.get_op_info()


@op_info_register(fill_d_op_info)
def _fill_d_op_tbe():
"""FillD TBE register"""
return

+ 2
- 1
mindspore/ops/operations/__init__.py View File

@@ -39,7 +39,7 @@ from .control_ops import ControlDepend, GeSwitch, Merge
from .inner_ops import ScalarCast
from .math_ops import (Abs, ACos, AddN, AssignAdd, AssignSub, Atan2, BatchMatMul,
ReduceMax, ReduceMin, ReduceMean, ReduceSum, ReduceAll, ReduceProd, CumProd,
Cos, Div, Equal, EqualCount, Exp, Floor, FloorDiv, FloorMod, Acosh,
Cos, Div, Equal, EqualCount, Exp, Erf, Floor, FloorDiv, FloorMod, Acosh,
Greater, GreaterEqual, Less, LessEqual, Log, LogicalAnd,
LogicalNot, LogicalOr, MatMul, Maximum,
Minimum, Mul, Neg, NMSWithMask, NotEqual,
@@ -139,6 +139,7 @@ __all__ = [
'ReLU',
'ReLU6',
'Elu',
'Erf',
'Sigmoid',
'HSwish',
'HSigmoid',


+ 30
- 0
mindspore/ops/operations/math_ops.py View File

@@ -1007,6 +1007,36 @@ class Log(PrimitiveWithInfer):
return x


class Erf(PrimitiveWithInfer):
r"""
Computes the Gauss error function of `input_x` element-wise.

Inputs:
- **input_x** (Tensor) - The input tensor.

Outputs:
Tensor, has the same shape and dtype as the `input_x`.

Examples:
>>> input_x = Tensor(np.array([-1, 0, 1, 2, 3]), mindspore.float32)
>>> erf = P.Erf()
>>> erf(input_x)
[-0.8427168, 0., 0.8427168, 0.99530876, 0.99997765]
"""

@prim_attr_register
def __init__(self):
"""init Erf"""
self.init_prim_io_names(inputs=['x'], outputs=['y'])

def infer_shape(self, x_shape):
return x_shape

def infer_dtype(self, x_type):
validator.check_tensor_type_same({"x": x_type}, [mstype.float16, mstype.float32], self.name)
return x_type


class Minimum(_MathBinaryOp):
"""
Computes the element-wise minimum of input tensors.


+ 4
- 0
tests/ut/python/ops/test_ops.py View File

@@ -250,6 +250,10 @@ test_case_math_ops = [
'block': P.Exp(),
'desc_inputs': [[2, 3]],
'desc_bprop': [[2, 3]]}),
('Erf', {
'block': P.Erf(),
'desc_inputs': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))],
'desc_bprop': [Tensor(np.array([-2, -1, 0, 1, 2]).astype(np.float16))]}),
('Floor', {
'block': P.Floor(),
'desc_inputs': [[2, 512, 56, 56]],


Loading…
Cancel
Save