Merge pull request !1838 from YuJianfeng/mastertags/v0.5.0-beta
| @@ -525,5 +525,27 @@ std::string GetProcessor(const AnfNodePtr &anf_node) { | |||
| } | |||
| return device; | |||
| } | |||
| bool IsSameShape(const std::vector<size_t> &shape_a, const std::vector<size_t> &shape_b) { | |||
| if (shape_a.size() != shape_b.size()) { | |||
| return false; | |||
| } | |||
| for (size_t i = 0; i < shape_a.size(); ++i) { | |||
| if (shape_a[i] != shape_b[i]) { | |||
| return false; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| int Sign(float x) { | |||
| if (x > 0) { | |||
| return 1; | |||
| } | |||
| if (x < 0) { | |||
| return -1; | |||
| } | |||
| return 0; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -82,6 +82,8 @@ bool ParseMetadata(const CNodePtr &kernel_node, const std::shared_ptr<const OpIn | |||
| bool IsAtomicNode(const CNodePtr &kernel_node); | |||
| void SaveJsonInfo(const std::string &json_name, const std::string &info); | |||
| std::string GetProcessor(const AnfNodePtr &anf_node); | |||
| bool IsSameShape(const std::vector<size_t> &shape_a, const std::vector<size_t> &shape_b); | |||
| int Sign(float x); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,115 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "kernel/cpu/sparse_apply_ftrl_cpu_kernel.h" | |||
| #include "kernel/common_utils.h" | |||
| #include "device/cpu/cpu_device_address.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| namespace { | |||
| constexpr size_t kSparseApplyFtrlInputSize = 5; | |||
| } // namespace | |||
| void SparseApplyFtrlCPUKernel::InitKernel(const CNodePtr &kernel_node) { | |||
| MS_EXCEPTION_IF_NULL(kernel_node); | |||
| std::vector<size_t> var_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 0); | |||
| std::vector<size_t> accum_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 1); | |||
| std::vector<size_t> linear_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 2); | |||
| std::vector<size_t> grad_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 3); | |||
| std::vector<size_t> indices_shape = AnfAlgo::GetPrevNodeOutputInferShape(kernel_node, 4); | |||
| if (!IsSameShape(var_shape, accum_shape)) { | |||
| MS_LOG(EXCEPTION) << "var and accum should have the same shape"; | |||
| } | |||
| if (!IsSameShape(var_shape, linear_shape)) { | |||
| MS_LOG(EXCEPTION) << "var and linear should have the same shape"; | |||
| } | |||
| if (var_shape.empty()) { | |||
| MS_LOG(EXCEPTION) << "var must be at least 1D"; | |||
| } | |||
| var_first_dim_size_ = var_shape[0]; | |||
| for (size_t i = 1; i < var_shape.size(); ++i) { | |||
| if (var_shape[i] != grad_shape[i]) { | |||
| MS_LOG(EXCEPTION) << "The shape of var and grad must equal in dimension " << i; | |||
| } | |||
| var_outer_dim_size_ *= var_shape[i]; | |||
| } | |||
| if (indices_shape.size() != 1) { | |||
| MS_LOG(EXCEPTION) << "indices must be a 1D vector"; | |||
| } | |||
| indices_size_ = indices_shape[0]; | |||
| if (grad_shape[0] != indices_size_) { | |||
| MS_LOG(ERROR) << "The first dimension of grad shape must be equal to indices"; | |||
| } | |||
| lr_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr"); | |||
| if (lr_ <= 0) { | |||
| MS_LOG(EXCEPTION) << "lr should be a positive scalar"; | |||
| } | |||
| l1_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l1"); | |||
| if (l1_ < 0) { | |||
| MS_LOG(EXCEPTION) << "l1 should be a non-negative scalar"; | |||
| } | |||
| l2_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "l2"); | |||
| if (l2_ < 0) { | |||
| MS_LOG(EXCEPTION) << "l2 should be a non-negative scalar"; | |||
| } | |||
| lr_power_ = AnfAlgo::GetNodeAttr<float>(kernel_node, "lr_power"); | |||
| if (lr_power_ > 0) { | |||
| MS_LOG(EXCEPTION) << "lr_power should be a non-positive scalar"; | |||
| } | |||
| } | |||
| bool SparseApplyFtrlCPUKernel::Launch(const std::vector<kernel::AddressPtr> &inputs, | |||
| const std::vector<kernel::AddressPtr> & /*workspace*/, | |||
| const std::vector<kernel::AddressPtr> & /*outputs*/) { | |||
| if (inputs.size() < kSparseApplyFtrlInputSize) { | |||
| MS_LOG(EXCEPTION) << "error input output size!"; | |||
| } | |||
| auto var = reinterpret_cast<float *>(inputs[0]->addr); | |||
| auto accum = reinterpret_cast<float *>(inputs[1]->addr); | |||
| auto linear = reinterpret_cast<float *>(inputs[2]->addr); | |||
| auto grad = reinterpret_cast<float *>(inputs[3]->addr); | |||
| auto indices = reinterpret_cast<int *>(inputs[4]->addr); | |||
| for (size_t i = 0; i < indices_size_; ++i) { | |||
| int index = indices[i]; | |||
| if ((size_t)index >= var_first_dim_size_) { | |||
| MS_LOG(EXCEPTION) << "Index " << index << " in indices is out of range"; | |||
| } | |||
| for (size_t j = var_outer_dim_size_ * index, k = var_outer_dim_size_ * i; j < var_outer_dim_size_ * (index + 1); | |||
| ++j, ++k) { | |||
| auto accum_new = accum[j] + grad[k] * grad[k]; | |||
| if (lr_power_ == -0.5) { | |||
| linear[j] += grad[k] - (sqrt(accum_new) - sqrt(accum[j])) / lr_ * var[j]; | |||
| } else { | |||
| linear[j] += grad[k] - (pow(accum_new, -lr_power_) - pow(accum[j], -lr_power_)) / lr_ * var[j]; | |||
| } | |||
| auto x = Sign(linear[j]) * l1_ - linear[j]; | |||
| float y; | |||
| if (lr_power_ == -0.5) { | |||
| y = sqrt(accum_new) / lr_ + 2 * l2_; | |||
| } else { | |||
| y = pow(accum_new, -lr_power_) / lr_ + 2 * l2_; | |||
| } | |||
| auto pre_shrink = x / y; | |||
| var[j] = abs(linear[j]) > l1_ ? pre_shrink : 0; | |||
| accum[j] = accum_new; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,59 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_ | |||
| #define MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_ | |||
| #include <vector> | |||
| #include "kernel/cpu/cpu_kernel.h" | |||
| #include "kernel/cpu/cpu_kernel_factory.h" | |||
| namespace mindspore { | |||
| namespace kernel { | |||
| class SparseApplyFtrlCPUKernel : public CPUKernel { | |||
| public: | |||
| SparseApplyFtrlCPUKernel() = default; | |||
| ~SparseApplyFtrlCPUKernel() override = default; | |||
| void InitKernel(const CNodePtr &kernel_node) override; | |||
| bool Launch(const std::vector<AddressPtr> &inputs, const std::vector<AddressPtr> &workspace, | |||
| const std::vector<AddressPtr> &outputs) override; | |||
| private: | |||
| size_t indices_size_{0}; | |||
| size_t var_first_dim_size_{0}; | |||
| size_t var_outer_dim_size_{1}; | |||
| float lr_{0}; | |||
| float l1_{0}; | |||
| float l2_{0}; | |||
| float lr_power_{0}; | |||
| }; | |||
| MS_REG_CPU_KERNEL(SparseApplyFtrl, | |||
| KernelAttr() | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeFloat32) | |||
| .AddInputAttr(kNumberTypeInt32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32) | |||
| .AddOutputAttr(kNumberTypeFloat32), | |||
| SparseApplyFtrlCPUKernel); | |||
| } // namespace kernel | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_KERNEL_CPU_SPARSE_APPLY_FTRL_CPU_KERNEL_H_ | |||
| @@ -0,0 +1,50 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.common.parameter import Parameter | |||
| from mindspore.ops import operations as P | |||
| import mindspore.common.dtype as mstype | |||
| class Net(nn.Cell): | |||
| def __init__(self): | |||
| super(Net, self).__init__() | |||
| self.sparse_apply_ftrl = P.SparseApplyFtrl(lr=0.001, l1=0.0, l2=0.0, lr_power=-0.5) | |||
| self.var = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="var") | |||
| self.accum = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="accum") | |||
| self.linear = Parameter(Tensor(np.ones([3, 3, 3]).astype(np.float32)), name="linear") | |||
| def construct(self, grad, indices): | |||
| out = self.sparse_apply_ftrl(self.var, self.accum, self.linear, grad, indices) | |||
| return out | |||
| def test_net(): | |||
| gradient = Tensor(np.random.rand(3, 3, 3).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="CPU") | |||
| sparse_apply_ftrl = Net() | |||
| output = sparse_apply_ftrl(gradient, indices) | |||
| print(output[0].asnumpy()) | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| sparse_apply_ftrl = Net() | |||
| output = sparse_apply_ftrl(gradient, indices) | |||
| print(output[0].asnumpy()) | |||