| @@ -201,6 +201,8 @@ using TileCost = SoftmaxCost; | |||||
| using TileCostPtr = std::shared_ptr<TileCost>; | using TileCostPtr = std::shared_ptr<TileCost>; | ||||
| using ConcatCost = TileCost; | using ConcatCost = TileCost; | ||||
| using ConcatCostPtr = std::shared_ptr<ConcatCost>; | using ConcatCostPtr = std::shared_ptr<ConcatCost>; | ||||
| using SplitCost = TileCost; | |||||
| using SplitCostPtr = std::shared_ptr<SplitCost>; | |||||
| class TmpIdentityCost : public OperatorCost { | class TmpIdentityCost : public OperatorCost { | ||||
| public: | public: | ||||
| @@ -179,6 +179,7 @@ REGISTER(TileInfo); | |||||
| REGISTER(StridedSliceInfo); | REGISTER(StridedSliceInfo); | ||||
| REGISTER(DropoutInfo); | REGISTER(DropoutInfo); | ||||
| REGISTER(ConcatInfo); | REGISTER(ConcatInfo); | ||||
| REGISTER(SplitInfo); | |||||
| } // namespace parallel | } // namespace parallel | ||||
| } // namespace mindspore | } // namespace mindspore | ||||
| @@ -40,5 +40,6 @@ | |||||
| #include "frontend/parallel/ops_info/tile_info.h" | #include "frontend/parallel/ops_info/tile_info.h" | ||||
| #include "frontend/parallel/ops_info/strided_slice_info.h" | #include "frontend/parallel/ops_info/strided_slice_info.h" | ||||
| #include "frontend/parallel/ops_info/concat_info.h" | #include "frontend/parallel/ops_info/concat_info.h" | ||||
| #include "frontend/parallel/ops_info/split_info.h" | |||||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_HEAD_FILES_H_ | ||||
| @@ -0,0 +1,294 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "frontend/parallel/ops_info/split_info.h" | |||||
| #include <string> | |||||
| #include <memory> | |||||
| #include <vector> | |||||
| #include "frontend/parallel/device_matrix.h" | |||||
| #include "frontend/parallel/strategy.h" | |||||
| #include "frontend/parallel/tensor_layout/tensor_redistribution.h" | |||||
| #include "frontend/parallel/context.h" | |||||
| #include "pipeline/jit/resource.h" | |||||
| namespace mindspore { | |||||
| namespace parallel { | |||||
| Status SplitInfo::GetAttrs() { | |||||
| int axis = 0; | |||||
| int output_num = 0; | |||||
| auto axis_iter = attrs_.find(AXIS); | |||||
| if (axis_iter != attrs_.end()) { | |||||
| MS_EXCEPTION_IF_NULL(axis_iter->second); | |||||
| if (axis_iter->second->isa<Int32Imm>()) { | |||||
| axis = axis_iter->second->cast<Int32ImmPtr>()->value(); | |||||
| } else { | |||||
| MS_LOG(ERROR) << name_ << ": The value of axis is not int"; | |||||
| return FAILED; | |||||
| } | |||||
| } else { | |||||
| MS_LOG(ERROR) << name_ << ": Can not find the axis attr"; | |||||
| return FAILED; | |||||
| } | |||||
| if (inputs_shape_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| int dim = SizeToInt(inputs_shape_[0].size()); | |||||
| if (axis < 0) { | |||||
| axis = axis + dim; | |||||
| } | |||||
| axis_ = SizeToInt(axis); | |||||
| auto output_num_iter = attrs_.find(OUTPUT_NUM); | |||||
| if (output_num_iter != attrs_.end()) { | |||||
| MS_EXCEPTION_IF_NULL(output_num_iter->second); | |||||
| if (output_num_iter->second->isa<Int32Imm>()) { | |||||
| output_num = output_num_iter->second->cast<Int32ImmPtr>()->value(); | |||||
| } else { | |||||
| MS_LOG(ERROR) << name_ << ": The value of output_num is not int"; | |||||
| return FAILED; | |||||
| } | |||||
| } else { | |||||
| MS_LOG(ERROR) << name_ << ": Can not find the output_num attr"; | |||||
| return FAILED; | |||||
| } | |||||
| output_num_ = output_num; | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::CheckStrategy(const StrategyPtr &strategy) { | |||||
| MS_EXCEPTION_IF_NULL(strategy); | |||||
| if (CheckStrategyValue(strategy, inputs_shape_) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Invalid strategy"; | |||||
| return FAILED; | |||||
| } | |||||
| std::vector<Dimensions> stra = strategy->GetInputDim(); | |||||
| if (stra.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": The strategy is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| if (axis_ >= stra[0].size()) { | |||||
| MS_LOG(ERROR) << name_ << ": The axis is out of range, the axis is " << axis_; | |||||
| return FAILED; | |||||
| } | |||||
| if (stra[0][axis_] != 1) { | |||||
| MS_LOG(ERROR) << name_ << ": The axis can not be split"; | |||||
| return FAILED; | |||||
| } | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::InferDevMatrixShape() { | |||||
| MS_EXCEPTION_IF_NULL(strategy_); | |||||
| std::vector<Dimensions> stra = strategy_->GetInputDim(); | |||||
| if (stra.empty()) { | |||||
| MS_LOG(ERROR) << name_ << "The strategy is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| dev_matrix_shape_ = stra[0]; | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::InferTensorMap() { | |||||
| TensorMap tensor_map; | |||||
| if (inputs_shape_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << "The inputs shape is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| int32_t size = SizeToInt(inputs_shape_[0].size()); | |||||
| for (int i = 0; i < size; ++i) { | |||||
| tensor_map.push_back(size - i - 1); | |||||
| } | |||||
| inputs_tensor_map_.push_back(tensor_map); | |||||
| for (size_t i = 0; i < outputs_shape_.size(); ++i) { | |||||
| outputs_tensor_map_.push_back(tensor_map); | |||||
| } | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::InferMirrorOps() { | |||||
| mirror_ops_.clear(); | |||||
| if (inputs_tensor_map_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": The inputs tensor map is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| Shape input_tensor_map = inputs_tensor_map_[0]; | |||||
| std::vector<Group> group; | |||||
| if (CreateGroupByTensorMap(input_tensor_map, &group) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Create group for input failed."; | |||||
| return FAILED; | |||||
| } | |||||
| OperatorVector mirror_op; | |||||
| if (group.empty()) { | |||||
| MS_LOG(INFO) << name_ << ": The mirror group is empty."; | |||||
| return SUCCESS; | |||||
| } else { | |||||
| mirror_op = CreateMirrorOps(group[0].name(), group[0].GetDevNum()); | |||||
| mirror_ops_.push_back(mirror_op); | |||||
| std::string group_name = group[0].name(); | |||||
| MS_LOG(INFO) << name_ << " : Create the mirror ops success, the group name is " << group_name; | |||||
| } | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::InferTensorInfo() { | |||||
| if (inputs_shape_.empty() || outputs_shape_.empty() || inputs_tensor_map_.empty() || outputs_tensor_map_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": Invalid args"; | |||||
| return FAILED; | |||||
| } | |||||
| TensorLayout input_layout, output_layout; | |||||
| // infer tensor layout | |||||
| if (input_layout.InitFromVector(dev_matrix_shape_, inputs_tensor_map_[0], inputs_shape_[0]) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Infer input tensor layout failed."; | |||||
| return FAILED; | |||||
| } | |||||
| TensorInfo input_tensor_info(input_layout); | |||||
| inputs_tensor_info_.push_back(input_tensor_info); | |||||
| if (output_layout.InitFromVector(dev_matrix_shape_, outputs_tensor_map_[0], outputs_shape_[0]) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Infer output tensor layout failed."; | |||||
| return FAILED; | |||||
| } | |||||
| for (size_t i = 0; i < outputs_shape_.size(); ++i) { | |||||
| TensorInfo output_tensor_info(output_layout); | |||||
| outputs_tensor_info_.push_back(output_tensor_info); | |||||
| } | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::SetCostUnderStrategy(const StrategyPtr &strategy) { return SetCostUnderStrategyBase(strategy); } | |||||
| Status SplitInfo::GenerateStrategies(int32_t stage_id) { | |||||
| if (InferAttrs() != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Infer attrs failed"; | |||||
| return FAILED; | |||||
| } | |||||
| if (inputs_shape_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": The inputs shape is empty"; | |||||
| return FAILED; | |||||
| } | |||||
| Shape input_split; | |||||
| for (size_t i = 0; i < inputs_shape_[0].size(); ++i) { | |||||
| if (i == axis_) { | |||||
| input_split.push_back(0); | |||||
| } else { | |||||
| input_split.push_back(1); | |||||
| } | |||||
| } | |||||
| Shapes splittable_input = {input_split}; | |||||
| Shapes tmp_inputs_shape = {inputs_shape_[0]}; | |||||
| std::vector<StrategyPtr> sp_vector; | |||||
| if (GenerateStrategiesForIndependentInputs(stage_id, tmp_inputs_shape, splittable_input, &sp_vector) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Generate strategies failed"; | |||||
| return FAILED; | |||||
| } | |||||
| size_t success = 0; | |||||
| for (auto &sp : sp_vector) { | |||||
| PrintStrategy(sp); | |||||
| if (SetCostUnderStrategy(sp) == SUCCESS) { | |||||
| success++; | |||||
| MS_LOG(INFO) << name_ << ": Successfully generated " << success << " strategy."; | |||||
| PrintStrategy(sp); | |||||
| } | |||||
| } | |||||
| return SUCCESS; | |||||
| } | |||||
| std::shared_ptr<Strategys> SplitInfo::GenerateBatchStrategies() { | |||||
| if (GetAttrs() != SUCCESS) { | |||||
| MS_LOG(EXCEPTION) << name_ << ": Get attr failed"; | |||||
| } | |||||
| CheckGlobalDeviceManager(); | |||||
| size_t dev_num = g_device_manager->GetDeviceListByStageId(0).size(); | |||||
| Dimensions input_strategy(inputs_shape_[0].size(), 1); | |||||
| // axis can't split | |||||
| if (inputs_shape_[0].size() > 1) { | |||||
| if (axis_ == 0) { | |||||
| input_strategy[1] = dev_num; | |||||
| } else { | |||||
| input_strategy[0] = dev_num; | |||||
| } | |||||
| } | |||||
| Strategys strategy_v = {input_strategy}; | |||||
| return std::make_shared<Strategys>(strategy_v); | |||||
| } | |||||
| Status SplitInfo::InferAsLossDivisor() { | |||||
| if (!ParallelContext::GetInstance()->loss_repeated_mean()) { | |||||
| as_loss_divisor_ = 1; | |||||
| return SUCCESS; | |||||
| } | |||||
| if (outputs_tensor_map_.empty()) { | |||||
| MS_LOG(ERROR) << name_ << ": The outputs tensor map is empty."; | |||||
| return FAILED; | |||||
| } | |||||
| if (outputs_tensor_map_[0].empty()) { | |||||
| as_loss_divisor_ = SizeToInt(global_device_list_.size()); | |||||
| MS_LOG(INFO) << name_ << ": The output is a scalar, use the dev size " << as_loss_divisor_ << ", loss divisor."; | |||||
| return SUCCESS; | |||||
| } | |||||
| as_loss_divisor_ = ComputeRepeatDeviceNumByTensorMap(dev_matrix_shape_, outputs_tensor_map_[0]); | |||||
| MS_LOG(INFO) << name_ << ": the dev matrix shape is " << ShapeToString(dev_matrix_shape_) | |||||
| << ", the output tensor map is " << ShapeToString(outputs_tensor_map_[0]) << ", loss divisor is " | |||||
| << as_loss_divisor_; | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::Init(const StrategyPtr &strategy) { | |||||
| if (InitWithAutoRepeatCalc(strategy) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Init failed."; | |||||
| return FAILED; | |||||
| } | |||||
| MS_LOG(INFO) << name_ << ": Init success."; | |||||
| return SUCCESS; | |||||
| } | |||||
| Status SplitInfo::InitForCostModel(const StrategyPtr &strategy) { | |||||
| if (InitForCostModelWithAutoRepeatCalc(strategy) != SUCCESS) { | |||||
| MS_LOG(ERROR) << name_ << ": Init for cost model failed."; | |||||
| return FAILED; | |||||
| } | |||||
| MS_LOG(INFO) << name_ << ": Init for cost model success."; | |||||
| return SUCCESS; | |||||
| } | |||||
| } // namespace parallel | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,60 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_ | |||||
| #define MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_ | |||||
| #include <string> | |||||
| #include <memory> | |||||
| #include "ir/value.h" | |||||
| #include "frontend/parallel/auto_parallel/operator_costmodel.h" | |||||
| #include "frontend/parallel/ops_info/operator_info.h" | |||||
| #include "frontend/parallel/strategy.h" | |||||
| namespace mindspore { | |||||
| namespace parallel { | |||||
| class SplitInfo : public OperatorInfo { | |||||
| public: | |||||
| SplitInfo(const std::string &operator_name, const Shapes &inputs_shape, const Shapes &outputs_shape, | |||||
| const PrimitiveAttrs &attrs) | |||||
| : OperatorInfo(operator_name, inputs_shape, outputs_shape, attrs, std::make_shared<ConcatCost>(false)) {} | |||||
| ~SplitInfo() override = default; | |||||
| Status Init(const StrategyPtr &strategy) override; | |||||
| Status InitForCostModel(const StrategyPtr &strategy) override; | |||||
| Status GenerateStrategies(int32_t) override; | |||||
| std::shared_ptr<Strategys> GenerateBatchStrategies() override; | |||||
| Status SetCostUnderStrategy(const StrategyPtr &) override; | |||||
| protected: | |||||
| Status GetAttrs() override; | |||||
| Status CheckStrategy(const StrategyPtr &strategy) override; | |||||
| Status InferMirrorOps() override; | |||||
| Status InferForwardCommunication() override { return SUCCESS; } | |||||
| Status InferTensorInfo() override; | |||||
| Status InferDevMatrixShape() override; | |||||
| Status InferTensorMap() override; | |||||
| Status InferAsLossDivisor() override; | |||||
| private: | |||||
| size_t axis_ = 0; | |||||
| size_t output_num_ = 0; | |||||
| }; | |||||
| } // namespace parallel | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_FRONTEND_PARALLEL_OPS_INFO_SPLIT_INFO_H_ | |||||
| @@ -263,7 +263,7 @@ bool IsSplittableOperator(const std::string &op_name) { | |||||
| LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT, | LOG, REDUCE_MEAN, REAL_DIV, SIGMOID, POW, MAXIMUM, MINIMUM, EQUAL, NOT_EQUAL, LOGICALNOT, GATHERV2, SQRT, CONCAT, | ||||
| STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | STRIDEDSLICE, GET_NEXT, CAST, NEG, SQUARE, BATCH_MATMUL, EXPAND_DIMS, SQUEEZE, SPARSE_GATHERV2, TILE, DROPOUT, | ||||
| SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, | SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, SIGMOID_CROSS_ENTROPY_WITH_LOGITS, SPARSE_SOFTMAX_CROSS_ENTROPY_WITH_LOGITS, | ||||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX}; | |||||
| EMBEDDING_LOOKUP, FUSE_BATCH_NORM_EX, SPLIT}; | |||||
| // clang-format on | // clang-format on | ||||
| auto iter = splittable_op.find(op_name); | auto iter = splittable_op.find(op_name); | ||||
| @@ -0,0 +1,147 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| import mindspore.context as context | |||||
| from mindspore import Tensor, Parameter | |||||
| import mindspore.nn as nn | |||||
| from mindspore.common.api import _executor | |||||
| from mindspore.nn import TrainOneStepCell, Momentum | |||||
| from mindspore.ops import operations as P | |||||
| class Net(nn.Cell): | |||||
| def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None, strategy3=None): | |||||
| super(Net, self).__init__() | |||||
| self.split = P.Split(axis, out_nums).shard(strategy1) | |||||
| self.mul = P.Mul().shard(strategy2) | |||||
| self.matmul = P.MatMul(transpose_b=True).shard(strategy2) | |||||
| self.matmul2 = P.MatMul().shard(strategy3) | |||||
| self.weight = Parameter(mul_weight, "w1") | |||||
| def construct(self, x): | |||||
| out = self.mul(x, self.weight) | |||||
| out1, out2, out3 = self.split(out) | |||||
| out = self.matmul(out1, out2) | |||||
| out = self.matmul2(out, out3) | |||||
| return out | |||||
| class Net1(nn.Cell): | |||||
| def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None): | |||||
| super(Net1, self).__init__() | |||||
| self.split = P.Split(axis, out_nums).shard(strategy1) | |||||
| self.mul = P.Mul().shard(strategy2) | |||||
| self.weight = Parameter(mul_weight, "w1") | |||||
| def construct(self, x): | |||||
| out1, out2 = self.split(self.weight) | |||||
| out = self.mul(x, out1) | |||||
| out = self.mul(out, out2) | |||||
| return out | |||||
| class Net2(nn.Cell): | |||||
| def __init__(self, mul_weight, axis=0, out_nums=1, strategy1=None, strategy2=None): | |||||
| super(Net2, self).__init__() | |||||
| self.split = P.Split(axis, out_nums).shard(strategy1) | |||||
| self.mul = P.Mul().shard(strategy2) | |||||
| self.weight = Parameter(mul_weight, "w1") | |||||
| def construct(self, x): | |||||
| out = self.mul(x, self.weight) | |||||
| out1, _ = self.split(out) | |||||
| return out1 | |||||
| _w = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||||
| _x = Tensor(np.ones([48, 64]), dtype=ms.float32) | |||||
| _w1 = Tensor(np.ones([96, 64, 32]), dtype=ms.float32) | |||||
| _x1 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) | |||||
| _w2 = Tensor(np.ones([48, 64, 32]), dtype=ms.float32) | |||||
| def compile_net(net): | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| train_net = TrainOneStepCell(net, optimizer) | |||||
| train_net.set_auto_parallel() | |||||
| _executor.compile(train_net, _x) | |||||
| context.reset_auto_parallel_context() | |||||
| def compile_net1(net): | |||||
| context.set_context(mode=context.GRAPH_MODE, save_graphs=True) | |||||
| optimizer = Momentum(net.trainable_params(), learning_rate=0.1, momentum=0.9) | |||||
| train_net = TrainOneStepCell(net, optimizer) | |||||
| train_net.set_auto_parallel() | |||||
| _executor.compile(train_net, _x1) | |||||
| context.reset_auto_parallel_context() | |||||
| def test_split_parameter(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = ((1, 4, 2),) | |||||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||||
| net = Net1(_w1, 0, 2, strategy1, strategy2) | |||||
| compile_net1(net) | |||||
| def test_split_parameter_no_full_split(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = ((1, 2, 2),) | |||||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||||
| net = Net1(_w1, 0, 2, strategy1, strategy2) | |||||
| compile_net1(net) | |||||
| def test_split_tensor(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = ((1, 8),) | |||||
| strategy2 = ((1, 8), (1, 8)) | |||||
| strategy3 = ((1, 1), (1, 8)) | |||||
| net = Net(_w, 0, 3, strategy1, strategy2, strategy3) | |||||
| compile_net(net) | |||||
| def test_split_output(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = ((1, 4, 2),) | |||||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||||
| net = Net2(_w2, 0, 2, strategy1, strategy2) | |||||
| compile_net1(net) | |||||
| def test_split_output_no_full_split(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = ((1, 2, 2),) | |||||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||||
| net = Net2(_w2, 0, 2, strategy1, strategy2) | |||||
| compile_net1(net) | |||||
| def test_split_no_strategy(): | |||||
| context.set_auto_parallel_context(parallel_mode="semi_auto_parallel", device_num=8, global_rank=0) | |||||
| strategy1 = None | |||||
| strategy2 = ((1, 4, 2), (1, 4, 2)) | |||||
| net = Net2(_w2, 0, 2, strategy1, strategy2) | |||||
| compile_net1(net) | |||||
| def test_split_auto_parallel(): | |||||
| context.set_auto_parallel_context(parallel_mode="auto_parallel", device_num=8, global_rank=0) | |||||
| net = Net2(_w2, 0, 2) | |||||
| compile_net1(net) | |||||