|
|
|
@@ -0,0 +1,189 @@ |
|
|
|
# Copyright 2020 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
""" test_ascend_control_sink """ |
|
|
|
import pytest |
|
|
|
import numpy as np |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore.ops import operations as op |
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
from mindspore.common.parameter import Parameter |
|
|
|
from mindspore.common.initializer import initializer |
|
|
|
|
|
|
|
|
|
|
|
class ControlSimpleIf(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super().__init__() |
|
|
|
self.addn = op.AddN() |
|
|
|
|
|
|
|
def construct(self, x, y, z, input1, input2): |
|
|
|
addn1 = self.addn([input1, input1, input1]) |
|
|
|
addn2 = self.addn([input2, input2, input2]) |
|
|
|
addn11 = self.addn([addn1, addn1, addn1]) |
|
|
|
addn22 = self.addn([addn2, addn2, addn2]) |
|
|
|
cond1 = x > y |
|
|
|
cond2 = y > z |
|
|
|
# dodge pylint |
|
|
|
if cond1 and cond2: |
|
|
|
out = self.addn([addn11, addn11]) |
|
|
|
else: |
|
|
|
out = self.addn([addn22, addn22]) |
|
|
|
out_me = self.addn([out, input1]) |
|
|
|
return out_me |
|
|
|
|
|
|
|
|
|
|
|
class ControlSimpleIfWithAssign(nn.Cell): |
|
|
|
def __init__(self, input_shape): |
|
|
|
super().__init__() |
|
|
|
self.addn = op.AddN() |
|
|
|
self.assign = op.Assign() |
|
|
|
self.input_data = Parameter(initializer(1, input_shape, mstype.float32), name="var") |
|
|
|
|
|
|
|
def construct(self, x, y, input_data): |
|
|
|
if x > y: |
|
|
|
out = self.addn([input_data, input_data, input_data]) |
|
|
|
else: |
|
|
|
out = self.assign(self.input_data, input_data) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class ControlIfinIf(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super().__init__() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
if x > y: |
|
|
|
x = x + 1 |
|
|
|
if y < 0: |
|
|
|
y = y + 1 |
|
|
|
else: |
|
|
|
y = y + 2 |
|
|
|
else: |
|
|
|
x = x + 2 |
|
|
|
x = x + y |
|
|
|
return x |
|
|
|
|
|
|
|
|
|
|
|
class ControlIfbyIfbyIf(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super().__init__() |
|
|
|
self.addn = op.AddN() |
|
|
|
|
|
|
|
def construct(self, x, y, cond1, cond2, input_data): |
|
|
|
tri_in = self.addn([input_data, input_data, input_data]) |
|
|
|
if x > y: |
|
|
|
addn_1 = self.addn([tri_in, tri_in]) |
|
|
|
else: |
|
|
|
addn_1 = self.addn([tri_in, tri_in, tri_in]) |
|
|
|
if cond1: |
|
|
|
addn_2 = self.addn([addn_1, addn_1]) |
|
|
|
else: |
|
|
|
addn_2 = self.addn([addn_1, addn_1, addn_1]) |
|
|
|
if cond2: |
|
|
|
out = self.addn([addn_2, addn_2, addn_2]) |
|
|
|
else: |
|
|
|
out = self.addn([addn_2, addn_2]) |
|
|
|
return out |
|
|
|
|
|
|
|
|
|
|
|
class ControlMixedWhileIf(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super().__init__() |
|
|
|
|
|
|
|
def construct(self, x, y): |
|
|
|
y = y + 4 |
|
|
|
while x < y: |
|
|
|
if 2 * x < y: |
|
|
|
x = x + 1 |
|
|
|
else: |
|
|
|
x = x + 2 |
|
|
|
x = x + 3 |
|
|
|
return x |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_simple_if(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
x = np.array(3).astype(np.float32) |
|
|
|
y = np.array(2).astype(np.float32) |
|
|
|
z = np.array(3).astype(np.float32) |
|
|
|
input_shape = (127, 7, 53, 31) |
|
|
|
input1 = np.random.randn(*input_shape).astype(np.float32) |
|
|
|
input2 = np.random.randn(*input_shape).astype(np.float32) |
|
|
|
net = ControlSimpleIf() |
|
|
|
output = net(Tensor(x), Tensor(y), Tensor(z), Tensor(input1), Tensor(input2)) |
|
|
|
expect = input2 * 3 * 3 * 2 + input1 |
|
|
|
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_simple_if_with_assign(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
x = np.array(0).astype(np.float32) |
|
|
|
y = np.array(1).astype(np.float32) |
|
|
|
input_shape = (127, 7, 53, 31) |
|
|
|
input_data = np.random.randn(*input_shape).astype(np.float32) |
|
|
|
net = ControlSimpleIfWithAssign(input_shape) |
|
|
|
output = net(Tensor(x), Tensor(y), Tensor(input_data)) |
|
|
|
expect = input_data |
|
|
|
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_if_in_if(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
x = np.array(2.345678).astype(np.float32) |
|
|
|
y = np.array(1.234567).astype(np.float32) |
|
|
|
net = ControlIfinIf() |
|
|
|
output = net(Tensor(x), Tensor(y)) |
|
|
|
expect = x + y + 3 |
|
|
|
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_if_by_if_by_if(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
x = np.array(2.345678).astype(np.float32) |
|
|
|
y = np.array(1.234567).astype(np.float32) |
|
|
|
cond1 = np.array(True).astype(np.bool) |
|
|
|
cond2 = np.array(False).astype(np.bool) |
|
|
|
input_shape = (127, 7, 53, 31) |
|
|
|
input_data = np.random.randn(*input_shape).astype(np.float32) |
|
|
|
net = ControlIfbyIfbyIf() |
|
|
|
output = net(Tensor(x), Tensor(y), Tensor(cond1), Tensor(cond2), Tensor(input_data)) |
|
|
|
expect = input_data * 3 * 2 * 2 * 2 |
|
|
|
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_mixed_while_if(): |
|
|
|
context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") |
|
|
|
x = np.array(2).astype(np.int32) |
|
|
|
y = np.array(14).astype(np.int32) |
|
|
|
net = ControlMixedWhileIf() |
|
|
|
output = net(Tensor(x), Tensor(y)) |
|
|
|
expect = np.array(22).astype(np.int32) |
|
|
|
assert np.allclose(expect, output.asnumpy(), 0.0001, 0.0001) |