|
|
|
@@ -168,6 +168,11 @@ class BeamSearchDecoder(nn.Cell): |
|
|
|
self.concat = P.Concat(axis=-1) |
|
|
|
self.gather_nd = P.GatherNd() |
|
|
|
|
|
|
|
self.greater_equal = P.GreaterEqual() |
|
|
|
self.sub = P.Sub() |
|
|
|
self.cast = P.Cast() |
|
|
|
self.zeroslike = P.ZerosLike() |
|
|
|
|
|
|
|
# init inputs and states |
|
|
|
self.start_ids = Tensor(np.full([batch_size * beam_width, 1], sos_id), mstype.int32) |
|
|
|
self.init_seq = Tensor(np.full([batch_size, beam_width, 1], sos_id), mstype.int32) |
|
|
|
@@ -199,8 +204,19 @@ class BeamSearchDecoder(nn.Cell): |
|
|
|
topk_scores, topk_indices = self.topk(flat_scores, self.beam_width) |
|
|
|
|
|
|
|
# convert to beam and word indices |
|
|
|
beam_indices = self.floor_div(topk_indices, self.vocab_size_tensor) |
|
|
|
word_indices = self.mod(topk_indices, self.vocab_size_tensor) |
|
|
|
#beam_indices = self.floor_div(topk_indices, self.vocab_size_tensor) |
|
|
|
#word_indices = self.mod(topk_indices, self.vocab_size_tensor) |
|
|
|
#====================================================================== |
|
|
|
#replace floor_div and mod op, since these two ops only support fp16 on |
|
|
|
#Ascend310, which will cause overflow. |
|
|
|
temp = topk_indices |
|
|
|
beam_indices = self.zeroslike(topk_indices) |
|
|
|
for _ in range(self.beam_width - 1): |
|
|
|
temp = self.sub(temp, self.vocab_size_tensor) |
|
|
|
res = self.cast(self.greater_equal(temp, 0), mstype.int32) |
|
|
|
beam_indices = beam_indices + res |
|
|
|
word_indices = topk_indices - beam_indices * self.vocab_size_tensor |
|
|
|
#====================================================================== |
|
|
|
|
|
|
|
# mask finished indices |
|
|
|
beam_indices = self.select(state_finished, self.beam_ids, beam_indices) |
|
|
|
|