| @@ -96,6 +96,7 @@ | |||
| #include "backend/optimizer/ascend/format_type/modify_ops_attrs.h" | |||
| #include "backend/optimizer/ascend/format_type/remove_no_use_reshape_op.h" | |||
| #include "backend/optimizer/ascend/ir_fusion/add_input_to_output.h" | |||
| #include "backend/optimizer/ascend/format_type/remove_internal_output.h" | |||
| #include "utils/context/ms_context.h" | |||
| #include "utils/config_manager.h" | |||
| #include "debug/anf_ir_dump.h" | |||
| @@ -199,6 +200,7 @@ void AscendDataLayout(const std::shared_ptr<session::KernelGraph> &kernel_graph) | |||
| data_layout_pm->AddPass(std::make_shared<OptimizeDependence>()); | |||
| data_layout_pm->AddPass(std::make_shared<TransDataSplit>()); | |||
| data_layout_pm->AddPass(std::make_shared<EraseVisitAttr>()); | |||
| data_layout_pm->AddPass(std::make_shared<RemoveInternalOutputTransOp>()); | |||
| optimizer->AddPassManager(data_layout_pm); | |||
| (void)optimizer->Optimize(kernel_graph); | |||
| kernel_graph->SetExecOrderByDefault(); | |||
| @@ -220,6 +222,7 @@ void AscendMixPrecision(const std::shared_ptr<session::KernelGraph> &kernel_grap | |||
| mixed_precision_pm->AddPass(std::make_shared<LayerNormBetaGammaBackpropFusion>()); | |||
| mixed_precision_pm->AddPass(std::make_shared<EraseVisitAttr>()); | |||
| mixed_precision_pm->AddPass(std::make_shared<ConvertUnSupportNodeToAICPU>()); | |||
| mixed_precision_pm->AddPass(std::make_shared<RemoveInternalOutputCast>()); | |||
| optimizer->AddPassManager(mixed_precision_pm); | |||
| (void)optimizer->Optimize(kernel_graph); | |||
| kernel_graph->SetExecOrderByDefault(); | |||
| @@ -142,6 +142,7 @@ AnfNodePtr InsertTransOpForMultipleOutput(const FuncGraphPtr &func_graph, const | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| std::vector<AnfNodePtr> make_tuple_inputs; | |||
| make_tuple_inputs.push_back(NewValueNode(prim::kPrimMakeTuple)); | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| for (size_t output_idx = 0; output_idx < AnfAlgo::GetOutputTensorNum(node); ++output_idx) { | |||
| std::string output_format = AnfAlgo::GetOutputFormat(node, output_idx); | |||
| if (output_format == kOpFormat_NC1KHKWHWC0) { | |||
| @@ -151,7 +152,11 @@ AnfNodePtr InsertTransOpForMultipleOutput(const FuncGraphPtr &func_graph, const | |||
| auto tuple_getitem = CreatTupleGetItemNode(func_graph, node, output_idx); | |||
| std::vector<size_t> origin_shape = AnfAlgo::GetOutputInferShape(node, output_idx); | |||
| if (kCommonFormatSet.find(output_format) == kCommonFormatSet.end() && origin_shape.size() > 1) { | |||
| make_tuple_inputs.emplace_back(AddTransOpNodeToGraph(func_graph, tuple_getitem, kernel_select, 0, false)); | |||
| auto trans_op = AddTransOpNodeToGraph(func_graph, tuple_getitem, kernel_select, 0, false); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(node)) { | |||
| kernel_graph->ReplaceInternalOutput(node, trans_op, output_idx, 0); | |||
| } | |||
| make_tuple_inputs.emplace_back(trans_op); | |||
| } else { | |||
| // No need insert trans op. | |||
| make_tuple_inputs.push_back(tuple_getitem); | |||
| @@ -249,9 +254,14 @@ AnfNodePtr InsertTransOpForOutput(const FuncGraphPtr &func_graph, const AnfNodeP | |||
| if (outputs_num == 0) { | |||
| return node; | |||
| } | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| // Single output | |||
| if (outputs_num == 1 && (!AnfAlgo::IsTupleOutput(node))) { | |||
| return InsertTransOpForSingleOutput(func_graph, node, kernel_select); | |||
| auto new_node = InsertTransOpForSingleOutput(func_graph, node, kernel_select); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(node)) { | |||
| kernel_graph->ReplaceInternalOutput(node, new_node); | |||
| } | |||
| return new_node; | |||
| } | |||
| // Multiple output | |||
| return InsertTransOpForMultipleOutput(func_graph, node, kernel_select); | |||
| @@ -40,6 +40,7 @@ AnfNodePtr InsertCastForMultipleOutput(const FuncGraphPtr &func_graph, const CNo | |||
| std::vector<AnfNodePtr> make_tuple_inputs; | |||
| AbstractBasePtrList abstract_list; | |||
| make_tuple_inputs.push_back(NewValueNode(prim::kPrimMakeTuple)); | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| for (size_t output_idx = 0; output_idx < AnfAlgo::GetOutputTensorNum(cnode); ++output_idx) { | |||
| AnfNodePtr replace_node = nullptr; | |||
| const auto origin_shape = AnfAlgo::GetOutputInferShape(cnode, output_idx); | |||
| @@ -64,6 +65,9 @@ AnfNodePtr InsertCastForMultipleOutput(const FuncGraphPtr &func_graph, const CNo | |||
| MS_EXCEPTION_IF_NULL(replace_node); | |||
| replace_node->set_scope(cnode->scope()); | |||
| AnfAlgo::SetNodeAttr(kAttrVisited, MakeValue(true), replace_node); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(cnode)) { | |||
| kernel_graph->ReplaceInternalOutput(cnode, replace_node, output_idx, 0); | |||
| } | |||
| } else { | |||
| replace_node = getitem; | |||
| } | |||
| @@ -87,6 +91,7 @@ AnfNodePtr InsertCastForOutput(const FuncGraphPtr &func_graph, const CNodePtr &c | |||
| return cnode; | |||
| } | |||
| MS_EXCEPTION_IF_NULL(cnode->Type()); | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| // Single output | |||
| if (!cnode->Type()->isa<Tuple>()) { | |||
| if (!need_insert_cast[0]) { | |||
| @@ -109,6 +114,9 @@ AnfNodePtr InsertCastForOutput(const FuncGraphPtr &func_graph, const CNodePtr &c | |||
| MS_EXCEPTION_IF_NULL(replace_node); | |||
| replace_node->set_scope(cnode->scope()); | |||
| AnfAlgo::SetNodeAttr(kAttrVisited, MakeValue(true), replace_node); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(cnode)) { | |||
| kernel_graph->ReplaceInternalOutput(cnode, replace_node); | |||
| } | |||
| } | |||
| return replace_node; | |||
| } | |||
| @@ -188,6 +196,10 @@ const AnfNodePtr InsertCast::Process(const FuncGraphPtr &func_graph, const AnfNo | |||
| CNodePtr cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| auto new_node = InsertCastForInput(func_graph, cnode); | |||
| auto kernel_graph = func_graph->cast<std::shared_ptr<session::KernelGraph>>(); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(node)) { | |||
| kernel_graph->ReplaceInternalOutput(node, new_node); | |||
| } | |||
| // process output | |||
| return InsertCastForOutput(func_graph, new_node, std::vector<bool>(AnfAlgo::GetOutputTensorNum(new_node), true)); | |||
| } | |||
| @@ -46,14 +46,13 @@ const AnfNodePtr InsertTransOp::Process(const FuncGraphPtr &func_graph, const An | |||
| if (node == nullptr || !AnfAlgo::IsRealKernel(node)) { | |||
| return nullptr; | |||
| } | |||
| AnfNodePtr front_node; | |||
| AnfAlgo::SetNodeAttr(kAttrVisited, MakeValue(true), node); | |||
| MS_LOG(DEBUG) << "process op: " << node->DebugString(); | |||
| AnfNodePtr new_node = InsertTransOpForInput(func_graph, node, kernel_select_); | |||
| auto kernel_graph = func_graph->cast<std::shared_ptr<session::KernelGraph>>(); | |||
| if (kernel_graph != nullptr && kernel_graph->IsInternalOutput(node)) { | |||
| front_node = kernel_graph->GetFrontNodeByInternalOutput(node); | |||
| kernel_graph->ReplaceInternalOutput(node, new_node); | |||
| } | |||
| AnfAlgo::SetNodeAttr(kAttrVisited, MakeValue(true), node); | |||
| MS_LOG(DEBUG) << "====process op: " << node->DebugString(); | |||
| AnfNodePtr new_node = InsertTransOpForInput(func_graph, node, kernel_select_); | |||
| auto ms_context = MsContext::GetInstance(); | |||
| MS_EXCEPTION_IF_NULL(ms_context); | |||
| if (ms_context->execution_mode() == kPynativeMode && !ms_context->enable_pynative_hook()) { | |||
| @@ -61,12 +60,7 @@ const AnfNodePtr InsertTransOp::Process(const FuncGraphPtr &func_graph, const An | |||
| return new_node; | |||
| } | |||
| } | |||
| auto final_node = InsertTransOpForOutput(func_graph, new_node, kernel_select_); | |||
| if (kernel_graph != nullptr && front_node != nullptr) { | |||
| auto old_node = kernel_graph->GetInternalOutputByFrontNode(front_node); | |||
| kernel_graph->ReplaceInternalOutput(old_node, final_node); | |||
| } | |||
| return final_node; | |||
| return InsertTransOpForOutput(func_graph, new_node, kernel_select_); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,83 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "backend/optimizer/ascend/format_type/remove_internal_output.h" | |||
| #include <memory> | |||
| #include "backend/session/anf_runtime_algorithm.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| namespace { | |||
| bool UsedForOutputOnly(const FuncGraphPtr &func_graph, const AnfNodePtr &node) { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| auto manager = func_graph->manager(); | |||
| MS_EXCEPTION_IF_NULL(manager); | |||
| auto &node_users = manager->node_users(); | |||
| auto iter = node_users.find(node); | |||
| if (iter == node_users.end()) { | |||
| return false; | |||
| } | |||
| const auto &node_set = iter->second; | |||
| for (const auto &node_index : node_set) { | |||
| if (!AnfAlgo::CheckPrimitiveType(node_index.first, prim::kPrimMakeTuple)) { | |||
| return false; | |||
| } | |||
| } | |||
| return true; | |||
| } | |||
| } // namespace | |||
| const BaseRef RemoveInternalOutputTransOp::DefinePattern() const { | |||
| VarPtr X = std::make_shared<Var>(); | |||
| auto prim = std::make_shared<Primitive>(kTransDataOpName); | |||
| return VectorRef({prim, X}); | |||
| } | |||
| const BaseRef RemoveInternalOutputCast::DefinePattern() const { | |||
| VarPtr X = std::make_shared<Var>(); | |||
| return VectorRef({prim::kPrimCast, X}); | |||
| } | |||
| const AnfNodePtr RemoveInternalOutput::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, | |||
| const EquivPtr &) const { | |||
| MS_EXCEPTION_IF_NULL(func_graph); | |||
| MS_EXCEPTION_IF_NULL(node); | |||
| auto kernel_graph = func_graph->cast<KernelGraphPtr>(); | |||
| if (kernel_graph == nullptr) { | |||
| return nullptr; | |||
| } | |||
| if (!kernel_graph->IsInternalOutput(node)) { | |||
| return nullptr; | |||
| } | |||
| if (!UsedForOutputOnly(func_graph, node)) { | |||
| return nullptr; | |||
| } | |||
| auto cnode = node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(cnode); | |||
| CheckCNodeInputSize(cnode, kTransOpInputNum); | |||
| auto input_node = cnode->input(1); | |||
| if (!AnfAlgo::CheckPrimitiveType(input_node, prim::kPrimTupleGetItem)) { | |||
| kernel_graph->ReplaceInternalOutput(node, input_node); | |||
| } else { | |||
| auto tuple_getitem = input_node->cast<CNodePtr>(); | |||
| MS_EXCEPTION_IF_NULL(tuple_getitem); | |||
| int idx = AnfAlgo::GetTupleGetItemOutIndex(tuple_getitem); | |||
| AnfNodePtr real_input_node = AnfAlgo::GetTupleGetItemRealInput(tuple_getitem); | |||
| kernel_graph->ReplaceInternalOutput(node, real_input_node, 0, idx); | |||
| } | |||
| return input_node; | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,51 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_FORMAT_TYPE_REMOVE_INTERNAL_OUTPUT_H_ | |||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_FORMAT_TYPE_REMOVE_INTERNAL_OUTPUT_H_ | |||
| #include <string> | |||
| #include "backend/optimizer/common/optimizer.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||
| class RemoveInternalOutput : public PatternProcessPass { | |||
| public: | |||
| explicit RemoveInternalOutput(const std::string &name, bool multigraph = true) | |||
| : PatternProcessPass(name, multigraph) {} | |||
| ~RemoveInternalOutput() override = default; | |||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||
| }; | |||
| class RemoveInternalOutputTransOp : public RemoveInternalOutput { | |||
| public: | |||
| explicit RemoveInternalOutputTransOp(bool multigraph = true) | |||
| : RemoveInternalOutput("remove_internal_output_trans_op", multigraph) {} | |||
| ~RemoveInternalOutputTransOp() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| }; | |||
| class RemoveInternalOutputCast : public RemoveInternalOutput { | |||
| public: | |||
| explicit RemoveInternalOutputCast(bool multigraph = true) | |||
| : RemoveInternalOutput("remove_internal_output_cast", multigraph) {} | |||
| ~RemoveInternalOutputCast() override = default; | |||
| const BaseRef DefinePattern() const override; | |||
| }; | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_FORMAT_TYPE_REMOVE_INTERNAL_OUTPUT_H_ | |||
| @@ -929,10 +929,15 @@ void KernelGraph::AddInternalOutput(const AnfNodePtr &front_node, const AnfNodeP | |||
| } | |||
| MS_LOG(INFO) << "Add internal node " << node->DebugString() << " with front node " << front_node->DebugString(); | |||
| front_to_internal_outputs_map_[front_node] = node; | |||
| internal_outputs_to_front_map_[node] = front_node; | |||
| int output_idx = 0; | |||
| if (AnfAlgo::CheckPrimitiveType(front_node, prim::kPrimTupleGetItem)) { | |||
| output_idx = AnfAlgo::GetTupleGetItemOutIndex(front_node->cast<CNodePtr>()); | |||
| } | |||
| internal_outputs_to_front_map_[node][output_idx] = front_node; | |||
| } | |||
| void KernelGraph::ReplaceInternalOutput(const AnfNodePtr &node, const AnfNodePtr &new_node) { | |||
| void KernelGraph::ReplaceInternalOutput(const AnfNodePtr &node, const AnfNodePtr &new_node, int src_output_idx, | |||
| int dst_output_idx) { | |||
| if (new_node == nullptr || node == nullptr) { | |||
| MS_LOG(INFO) << "New node or node is nullptr"; | |||
| return; | |||
| @@ -947,9 +952,30 @@ void KernelGraph::ReplaceInternalOutput(const AnfNodePtr &node, const AnfNodePtr | |||
| return; | |||
| } | |||
| MS_LOG(INFO) << "Replace internal node " << node->DebugString() << " To " << new_node->DebugString(); | |||
| internal_outputs_to_front_map_[new_node] = iter->second; | |||
| front_to_internal_outputs_map_[iter->second] = new_node; | |||
| internal_outputs_to_front_map_.erase(iter); | |||
| auto &front_nodes = iter->second; | |||
| // Move all front nodes to new node mapping | |||
| if (src_output_idx == -1) { | |||
| internal_outputs_to_front_map_[new_node] = front_nodes; | |||
| for (const auto &front_node_iter : front_nodes) { | |||
| front_to_internal_outputs_map_[front_node_iter.second] = new_node; | |||
| } | |||
| internal_outputs_to_front_map_.erase(iter); | |||
| return; | |||
| } | |||
| // Move specified front node to new node mapping | |||
| int index = SizeToInt(src_output_idx); | |||
| auto front_node_iter = front_nodes.find(index); | |||
| if (front_node_iter == front_nodes.end()) { | |||
| MS_LOG(INFO) << "The output " << src_output_idx << " of node " << node->DebugString() << " is not an internal node"; | |||
| return; | |||
| } | |||
| auto front_node = front_node_iter->second; | |||
| internal_outputs_to_front_map_[new_node][dst_output_idx] = front_node; | |||
| front_to_internal_outputs_map_[front_node] = new_node; | |||
| front_nodes.erase(index); | |||
| if (front_nodes.empty()) { | |||
| internal_outputs_to_front_map_.erase(iter); | |||
| } | |||
| } | |||
| AnfNodePtr KernelGraph::GetInternalOutputByFrontNode(const AnfNodePtr &front_node) const { | |||
| @@ -967,14 +993,6 @@ bool KernelGraph::IsInternalOutput(const AnfNodePtr &node) const { | |||
| return false; | |||
| } | |||
| AnfNodePtr KernelGraph::GetFrontNodeByInternalOutput(const AnfNodePtr &node) const { | |||
| auto iter = internal_outputs_to_front_map_.find(node); | |||
| if (iter != internal_outputs_to_front_map_.end()) { | |||
| return iter->second; | |||
| } | |||
| return nullptr; | |||
| } | |||
| void KernelGraph::AddFinalOutputKernel(const AnfNodePtr &node) { | |||
| if (node == nullptr) { | |||
| return; | |||
| @@ -148,10 +148,10 @@ class KernelGraph : public FuncGraph { | |||
| const std::map<std::string, std::pair<AnfNodePtr, int>> &summary_nodes() const { return summary_nodes_; } | |||
| void set_summary_nodes(const std::map<std::string, std::pair<AnfNodePtr, int>> &nodes) { summary_nodes_ = nodes; } | |||
| void AddInternalOutput(const AnfNodePtr &front_node, const AnfNodePtr &node); | |||
| void ReplaceInternalOutput(const AnfNodePtr &node, const AnfNodePtr &new_node); | |||
| void ReplaceInternalOutput(const AnfNodePtr &node, const AnfNodePtr &new_node, int src_output_idx = -1, | |||
| int dst_output_idx = -1); | |||
| AnfNodePtr GetInternalOutputByFrontNode(const AnfNodePtr &front_node) const; | |||
| bool IsInternalOutput(const AnfNodePtr &node) const; | |||
| AnfNodePtr GetFrontNodeByInternalOutput(const AnfNodePtr &node) const; | |||
| void AddFinalOutputKernel(const AnfNodePtr &node); | |||
| bool IsFinalOutputKernel(const AnfNodePtr &node) const; | |||
| uint32_t current_epoch() const { return current_epoch_; } | |||
| @@ -223,7 +223,7 @@ class KernelGraph : public FuncGraph { | |||
| CNodePtr end_goto_; | |||
| bool null_output_; | |||
| std::unordered_map<AnfNodePtr, AnfNodePtr> front_to_internal_outputs_map_; | |||
| std::unordered_map<AnfNodePtr, AnfNodePtr> internal_outputs_to_front_map_; | |||
| std::unordered_map<AnfNodePtr, std::unordered_map<int, AnfNodePtr>> internal_outputs_to_front_map_; | |||
| std::set<AnfNodePtr> final_output_kernels_; | |||
| uint32_t current_epoch_; | |||
| }; | |||
| @@ -300,7 +300,11 @@ void SessionBasic::InitInternalOutputParameter(const AnfNodePtr &out_node, const | |||
| MS_LOG(INFO) << "No corresponding internal output for output node"; | |||
| return; | |||
| } | |||
| auto real_kernel = AnfAlgo::VisitKernel(ref_node, 0); | |||
| size_t output_idx = 0; | |||
| if (AnfAlgo::CheckPrimitiveType(out_node, prim::kPrimTupleGetItem)) { | |||
| output_idx = AnfAlgo::GetTupleGetItemOutIndex(out_node->cast<CNodePtr>()); | |||
| } | |||
| auto real_kernel = AnfAlgo::VisitKernel(ref_node, output_idx); | |||
| auto ref_real_node = real_kernel.first; | |||
| auto ref_real_node_index = real_kernel.second; | |||
| if (ref_real_node->isa<CNode>() && node_graph->IsInternalOutput(ref_real_node) && | |||
| @@ -325,6 +329,7 @@ void SessionBasic::InitInternalOutputParameter(const AnfNodePtr &out_node, const | |||
| builder.SetOutputsFormat({format}); | |||
| d_kernel_info->set_select_kernel_build_info(builder.Build()); | |||
| AnfAlgo::SetOutputAddr(address, 0, parameter.get()); | |||
| AnfAlgo::SetOutputInferTypeAndShape({type}, {AnfAlgo::GetOutputInferShape(parameter, 0)}, parameter.get()); | |||
| } | |||
| } | |||
| @@ -0,0 +1,89 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| from mindspore.nn import TrainOneStepCell, WithLossCell | |||
| from mindspore.nn.optim import Momentum | |||
| from mindspore.ops import operations as P | |||
| context.set_context(mode=context.GRAPH_MODE, device_target="Ascend") | |||
| class LeNet(nn.Cell): | |||
| def __init__(self): | |||
| super(LeNet, self).__init__() | |||
| self.relu = P.ReLU() | |||
| self.batch_size = 32 | |||
| self.conv1 = nn.Conv2d(1, 6, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') | |||
| self.conv2 = nn.Conv2d(6, 16, kernel_size=5, stride=1, padding=0, has_bias=False, pad_mode='valid') | |||
| self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |||
| self.reshape = P.Reshape() | |||
| self.fc1 = nn.Dense(400, 120) | |||
| self.fc1.matmul.add_prim_attr("primitive_target", "CPU") | |||
| self.fc1.bias_add.add_prim_attr("primitive_target", "CPU") | |||
| self.fc2 = nn.Dense(120, 84) | |||
| self.fc2.matmul.add_prim_attr("primitive_target", "CPU") | |||
| self.fc2.bias_add.add_prim_attr("primitive_target", "CPU") | |||
| self.fc3 = nn.Dense(84, 10) | |||
| self.fc3.matmul.add_prim_attr("primitive_target", "CPU") | |||
| self.fc3.bias_add.add_prim_attr("primitive_target", "CPU") | |||
| def construct(self, input_x): | |||
| output = self.conv1(input_x) | |||
| output = self.relu(output) | |||
| output = self.pool(output) | |||
| output = self.conv2(output) | |||
| output = self.relu(output) | |||
| output = self.pool(output) | |||
| output = self.reshape(output, (self.batch_size, -1)) | |||
| output = self.fc1(output) | |||
| output = self.relu(output) | |||
| output = self.fc2(output) | |||
| output = self.relu(output) | |||
| output = self.fc3(output) | |||
| return output | |||
| def train(net, data, label): | |||
| learning_rate = 0.01 | |||
| momentum = 0.9 | |||
| optimizer = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), learning_rate, momentum) | |||
| criterion = nn.SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True) | |||
| net_with_criterion = WithLossCell(net, criterion) | |||
| train_network = TrainOneStepCell(net_with_criterion, optimizer) # optimizer | |||
| train_network.set_train() | |||
| res = train_network(data, label) | |||
| print("+++++++++Loss+++++++++++++") | |||
| print(res) | |||
| print("+++++++++++++++++++++++++++") | |||
| diff = res.asnumpy()[0] - 2.3025851 | |||
| assert np.all(diff < 1.e-7) | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_arm_ascend_training | |||
| @pytest.mark.platform_x86_ascend_training | |||
| @pytest.mark.env_onecard | |||
| def test_lenet(): | |||
| data = Tensor(np.ones([32, 1, 32, 32]).astype(np.float32) * 0.01) | |||
| label = Tensor(np.ones([32]).astype(np.int32)) | |||
| net = LeNet() | |||
| train(net, data, label) | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -43,6 +44,9 @@ class Net(nn.Cell): | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_net(): | |||
| gradient = Tensor(np.ones([3, 3, 3]).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -35,6 +36,9 @@ class Net(nn.Cell): | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_net(): | |||
| gradient = Tensor(np.ones([3, 3, 3]).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| @@ -14,6 +14,7 @@ | |||
| # ============================================================================ | |||
| import numpy as np | |||
| import pytest | |||
| import mindspore.context as context | |||
| import mindspore.nn as nn | |||
| from mindspore import Tensor | |||
| @@ -37,6 +38,9 @@ class Net(nn.Cell): | |||
| return out | |||
| @pytest.mark.level0 | |||
| @pytest.mark.platform_x86_cpu | |||
| @pytest.mark.env_onecard | |||
| def test_net(): | |||
| gradient = Tensor(np.ones([3, 3, 3]).astype(np.float32)) | |||
| indices = Tensor([0, 1, 2], mstype.int32) | |||
| @@ -0,0 +1,174 @@ | |||
| /** | |||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||
| * | |||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||
| * you may not use this file except in compliance with the License. | |||
| * You may obtain a copy of the License at | |||
| * | |||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||
| * | |||
| * Unless required by applicable law or agreed to in writing, software | |||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| * See the License for the specific language governing permissions and | |||
| * limitations under the License. | |||
| */ | |||
| #include "common/backend_common_test.h" | |||
| #include "debug/anf_ir_dump.h" | |||
| #include "common/py_func_graph_fetcher.h" | |||
| #include "backend/optimizer/ascend/format_type/remove_internal_output.h" | |||
| #define private public | |||
| #define protected public | |||
| #include "backend/optimizer/ascend/format_type/insert_trans_op.h" | |||
| #undef private | |||
| #undef protected | |||
| namespace mindspore { | |||
| namespace opt { | |||
| using KernelBuildInfoBuilder = kernel::KernelBuildInfo::KernelBuildInfoBuilder; | |||
| class TestHWRemoveInternalOutput : public BackendCommon { | |||
| public: | |||
| TestHWRemoveInternalOutput() : getPyFun_("gtest_input.pre_activate.remove_internal_output_test", true) {} | |||
| ~TestHWRemoveInternalOutput() override = default; | |||
| AnfNodePtr GetMakeTuple(const KernelGraphPtr &kg) { | |||
| auto ret = kg->get_return(); | |||
| MS_EXCEPTION_IF_NULL(ret); | |||
| auto make_tuple = ret->input(1); | |||
| return make_tuple; | |||
| } | |||
| KernelGraphPtr GetSingleOutputGraph(const std::string &func_name, const std::string &sub_func_name) { | |||
| FuncGraphPtr g = getPyFun_.CallAndParseRet(func_name, sub_func_name); | |||
| std::vector<int> shp{2, 32, 224, 224}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp); | |||
| AbstractBasePtrList args_spec_list{x_abstract, x_abstract}; | |||
| auto kg = GetKernelGraph(g, args_spec_list); | |||
| auto make_tuple = GetMakeTuple(kg); | |||
| auto add = make_tuple->cast<CNodePtr>()->input(1); | |||
| MS_EXCEPTION_IF_NULL(add); | |||
| kg->AddInternalOutput(add, add); | |||
| KernelBuildInfoBuilder builder; | |||
| builder.SetInputsFormat({kOpFormat_DEFAULT, kOpFormat_DEFAULT}); | |||
| builder.SetInputsDeviceType({kFloat32->type_id(), kFloat32->type_id()}); | |||
| builder.SetOutputsFormat({kOpFormat_NC1HWC0}); | |||
| builder.SetOutputsDeviceType({kFloat16->type_id()}); | |||
| add->set_kernel_info(std::make_shared<device::KernelInfo>()); | |||
| AnfAlgo::SetSelectKernelBuildInfo(builder.Build(), add.get()); | |||
| return kg; | |||
| } | |||
| KernelGraphPtr GetMutilpleOutputGraph(const std::string &func_name, const std::string &sub_func_name) { | |||
| FuncGraphPtr g = getPyFun_.CallAndParseRet(func_name, sub_func_name); | |||
| std::vector<int> shp{2, 32, 224, 224}; | |||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp); | |||
| AbstractBasePtrList args_spec_list{x_abstract}; | |||
| auto kg = GetKernelGraph(g, args_spec_list); | |||
| auto output_make_tuple = GetMakeTuple(kg); | |||
| auto make_tuple = output_make_tuple->cast<CNodePtr>()->input(1); | |||
| MS_EXCEPTION_IF_NULL(make_tuple); | |||
| auto tuple_getitem1 = make_tuple->cast<CNodePtr>()->input(1); | |||
| MS_EXCEPTION_IF_NULL(tuple_getitem1); | |||
| auto tuple_getitem2 = make_tuple->cast<CNodePtr>()->input(2); | |||
| MS_EXCEPTION_IF_NULL(tuple_getitem2); | |||
| auto max_pool = tuple_getitem1->cast<CNodePtr>()->input(1); | |||
| MS_EXCEPTION_IF_NULL(max_pool); | |||
| kg->AddInternalOutput(tuple_getitem1, max_pool); | |||
| kg->AddInternalOutput(tuple_getitem2, max_pool); | |||
| KernelBuildInfoBuilder builder; | |||
| builder.SetInputsFormat({kOpFormat_DEFAULT}); | |||
| builder.SetInputsDeviceType({kFloat32->type_id()}); | |||
| builder.SetOutputsFormat({kOpFormat_NC1HWC0, kOpFormat_NC1HWC0}); | |||
| builder.SetOutputsDeviceType({kFloat16->type_id(), kFloat16->type_id()}); | |||
| max_pool->set_kernel_info(std::make_shared<device::KernelInfo>()); | |||
| AnfAlgo::SetSelectKernelBuildInfo(builder.Build(), max_pool.get()); | |||
| return kg; | |||
| } | |||
| UT::PyFuncGraphFetcher getPyFun_; | |||
| }; | |||
| class MockRemoveInternalOutputTransOpKernelSelect : public KernelSelect { | |||
| public: | |||
| MockRemoveInternalOutputTransOpKernelSelect() = default; | |||
| ~MockRemoveInternalOutputTransOpKernelSelect() override = default; | |||
| void SelectKernel(const CNodePtr &cnode) override { | |||
| KernelBuildInfoBuilder builder; | |||
| builder.SetInputsFormat({kOpFormat_NC1HWC0}); | |||
| builder.SetInputsDeviceType({kFloat16->type_id()}); | |||
| builder.SetOutputsFormat({kOpFormat_DEFAULT}); | |||
| builder.SetOutputsDeviceType({kFloat32->type_id()}); | |||
| AnfAlgo::SetSelectKernelBuildInfo(builder.Build(), cnode.get()); | |||
| } | |||
| }; | |||
| TEST_F(TestHWRemoveInternalOutput, test_remove_internal_output_trans_op_for_single_output) { | |||
| auto ms_context = MsContext::GetInstance(); | |||
| MS_EXCEPTION_IF_NULL(ms_context); | |||
| ms_context->set_execution_mode(kGraphMode); | |||
| auto kg = GetSingleOutputGraph("test_remove_internal_output_trans_op_for_single_output", "before"); | |||
| // insert trans op for output | |||
| auto graph_optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pass_manager = std::make_shared<opt::PassManager>(); | |||
| auto insert_trans_op_pass = std::make_shared<opt::InsertTransOp>(); | |||
| insert_trans_op_pass->kernel_select_ = std::make_shared<MockRemoveInternalOutputTransOpKernelSelect>(); | |||
| pass_manager->AddPass(insert_trans_op_pass); | |||
| graph_optimizer->AddPassManager(pass_manager); | |||
| auto new_g = graph_optimizer->Optimize(kg); | |||
| FuncGraphPtr g_after = | |||
| getPyFun_.CallAndParseRet("test_remove_internal_output_trans_op_for_single_output", "after_insert_trans_op"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_g)); | |||
| auto make_tuple = GetMakeTuple(kg); | |||
| auto trans_data = make_tuple->cast<CNodePtr>()->input(1); | |||
| EXPECT_TRUE(kg->IsInternalOutput(trans_data)); | |||
| // remove trans op for internal output | |||
| auto graph_optimizer1 = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pass_manager1 = std::make_shared<opt::PassManager>(); | |||
| auto remove_internal_output_trans_op_pass = std::make_shared<opt::RemoveInternalOutputTransOp>(); | |||
| pass_manager1->AddPass(remove_internal_output_trans_op_pass); | |||
| graph_optimizer1->AddPassManager(pass_manager1); | |||
| auto new_g1 = graph_optimizer1->Optimize(new_g); | |||
| FuncGraphPtr g_after1 = getPyFun_.CallAndParseRet("test_remove_internal_output_trans_op_for_single_output", | |||
| "after_remove_internal_output_trans_op"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after1, new_g1)); | |||
| } | |||
| TEST_F(TestHWRemoveInternalOutput, test_remove_internal_output_trans_op_for_multiple_output) { | |||
| auto kg = GetMutilpleOutputGraph("test_remove_internal_output_trans_op_for_multiple_output", "before"); | |||
| // insert trans op for output | |||
| auto graph_optimizer = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pass_manager = std::make_shared<opt::PassManager>(); | |||
| auto insert_trans_op_pass = std::make_shared<opt::InsertTransOp>(); | |||
| insert_trans_op_pass->kernel_select_ = std::make_shared<MockRemoveInternalOutputTransOpKernelSelect>(); | |||
| pass_manager->AddPass(insert_trans_op_pass); | |||
| graph_optimizer->AddPassManager(pass_manager); | |||
| auto new_g = graph_optimizer->Optimize(kg); | |||
| FuncGraphPtr g_after = | |||
| getPyFun_.CallAndParseRet("test_remove_internal_output_trans_op_for_multiple_output", "after_insert_trans_op"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_g)); | |||
| auto output_make_tuple = GetMakeTuple(kg); | |||
| auto make_tuple = output_make_tuple->cast<CNodePtr>()->input(1); | |||
| auto tuple_getitem = make_tuple->cast<CNodePtr>()->input(1); | |||
| auto make_tuple1 = tuple_getitem->cast<CNodePtr>()->input(1); | |||
| auto trans_data1 = make_tuple1->cast<CNodePtr>()->input(1); | |||
| auto trans_data2 = make_tuple1->cast<CNodePtr>()->input(2); | |||
| EXPECT_TRUE(kg->IsInternalOutput(trans_data1)); | |||
| EXPECT_TRUE(kg->IsInternalOutput(trans_data2)); | |||
| // remove trans op for internal output | |||
| auto graph_optimizer1 = std::make_shared<opt::GraphOptimizer>(); | |||
| auto pass_manager1 = std::make_shared<opt::PassManager>(); | |||
| auto remove_internal_output_trans_op_pass = std::make_shared<opt::RemoveInternalOutputTransOp>(); | |||
| pass_manager1->AddPass(remove_internal_output_trans_op_pass); | |||
| graph_optimizer1->AddPassManager(pass_manager1); | |||
| auto new_g1 = graph_optimizer1->Optimize(new_g); | |||
| FuncGraphPtr g_after1 = getPyFun_.CallAndParseRet("test_remove_internal_output_trans_op_for_multiple_output", | |||
| "after_remove_internal_output_trans_op"); | |||
| EXPECT_TRUE(CheckEqualGraph(g_after1, new_g1)); | |||
| } | |||
| } // namespace opt | |||
| } // namespace mindspore | |||
| @@ -0,0 +1,83 @@ | |||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||
| # | |||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||
| # you may not use this file except in compliance with the License. | |||
| # You may obtain a copy of the License at | |||
| # | |||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||
| # | |||
| # Unless required by applicable law or agreed to in writing, software | |||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
| # See the License for the specific language governing permissions and | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| from mindspore.ops import Primitive | |||
| from mindspore.ops import operations as P | |||
| tuple_getitem = Primitive('tuple_getitem') | |||
| add = P.TensorAdd() | |||
| max_pool = P.MaxPoolWithArgmax(padding="same", ksize=3, strides=2) | |||
| make_tuple = Primitive('make_tuple') | |||
| trans_data = Primitive("TransData") | |||
| class FnDict: | |||
| def __init__(self): | |||
| self.fnDict = {} | |||
| def __call__(self, fn): | |||
| self.fnDict[fn.__name__] = fn | |||
| def __getitem__(self, name): | |||
| return self.fnDict[name] | |||
| def test_remove_internal_output_trans_op_for_single_output(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(x, y): | |||
| res = add(x, y) | |||
| return res | |||
| @fns | |||
| def after_insert_trans_op(x, y): | |||
| output = add(x, y) | |||
| res = trans_data(output) | |||
| return make_tuple(res) | |||
| @fns | |||
| def after_remove_internal_output_trans_op(x, y): | |||
| res = add(x, y) | |||
| return make_tuple(res) | |||
| return fns[tag] | |||
| def test_remove_internal_output_trans_op_for_multiple_output(tag): | |||
| fns = FnDict() | |||
| @fns | |||
| def before(x): | |||
| max_pool_res = max_pool(x) | |||
| res = make_tuple(tuple_getitem(max_pool_res, 0), tuple_getitem(max_pool_res, 1)) | |||
| return res | |||
| @fns | |||
| def after_insert_trans_op(x): | |||
| output = max_pool(x) | |||
| trans_data0 = trans_data(tuple_getitem(output, 0)) | |||
| trans_data1 = trans_data(tuple_getitem(output, 1)) | |||
| new_make_tuple = make_tuple(trans_data0, trans_data1) | |||
| res = make_tuple(tuple_getitem(new_make_tuple, 0), tuple_getitem(new_make_tuple, 1)) | |||
| return make_tuple(res) | |||
| @fns | |||
| def after_remove_internal_output_trans_op(x): | |||
| output = max_pool(x) | |||
| new_make_tuple = make_tuple(tuple_getitem(output, 0), tuple_getitem(output, 1)) | |||
| res = make_tuple(tuple_getitem(new_make_tuple, 0), tuple_getitem(new_make_tuple, 1)) | |||
| return make_tuple(res) | |||
| return fns[tag] | |||