| @@ -24,7 +24,7 @@ | |||
| #include "schema/inner/model_generated.h" | |||
| #include "src/ops/primitive_c.h" | |||
| #include "ir/func_graph.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| namespace mindspore::lite { | |||
| class AnfExporter { | |||
| @@ -47,7 +47,7 @@ class AnfExporter { | |||
| const std::unique_ptr<schema::MetaGraphT> &meta_graphT, schema::CNodeT *output_cnode); | |||
| void SetGraphInputIndex(const std::unique_ptr<schema::MetaGraphT> &meta_graphT); | |||
| int SetGraphoutputIndex(const CNodePtr &cnode, const std::unique_ptr<schema::MetaGraphT> &meta_graphT, | |||
| schema::CNodeT *return_node); | |||
| schema::CNodeT *return_node); | |||
| bool IsPrimitiveCNode(const AnfNodePtr &node, schema::PrimitiveType type); | |||
| int ConvertQuantParam(const std::unique_ptr<schema::MetaGraphT> &meta_graph, | |||
| const std::shared_ptr<PrimitiveC> primitive, const std::unique_ptr<schema::CNodeT> &dst_node); | |||
| @@ -202,7 +202,7 @@ PARSE_ONNXATTR_IN_SCALAR_FORM(int64, int64) | |||
| PARSE_ONNXATTR_IN_SCALAR_FORM(uint64, uint64) | |||
| int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node, | |||
| const onnx::ValueInfoProto &value_proto) { | |||
| const onnx::ValueInfoProto &value_proto) { | |||
| if (node == nullptr) { | |||
| return RET_NULL_PTR; | |||
| } | |||
| @@ -273,7 +273,7 @@ int AnfImporterFromProtobuf::BuildParameterForFuncGraph(const ParameterPtr &node | |||
| } | |||
| int AnfImporterFromProtobuf::ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, | |||
| const onnx::GraphProto &importProto) { | |||
| const onnx::GraphProto &importProto) { | |||
| if (outputFuncGraph == nullptr) { | |||
| return RET_NULL_PTR; | |||
| } | |||
| @@ -557,6 +557,7 @@ std::unordered_map<std::string, abstract::AbstractTensorPtr> AnfImporterFromProt | |||
| CNodePtr AnfImporterFromProtobuf::BuildCNodeForFuncGraph(const FuncGraphPtr &outputFuncGraph, | |||
| const onnx::NodeProto &node_proto, | |||
| const schema::QuantType &quantType) { | |||
| static bool interrupt = false; | |||
| if (outputFuncGraph == nullptr) { | |||
| MS_LOG(ERROR) << "output funcgraph is nullptr"; | |||
| return nullptr; | |||
| @@ -600,13 +601,17 @@ CNodePtr AnfImporterFromProtobuf::BuildCNodeForFuncGraph(const FuncGraphPtr &out | |||
| inputs.push_back(anfnode_build_map_[input_name]); | |||
| } | |||
| auto primitivec_ptr = PrimitiveC::Create(*prim, inputs, quantType); | |||
| if (primitivec_ptr == nullptr) { | |||
| MS_LOG(ERROR) << "Create PrimitiveC return nullptr, " << prim->name(); | |||
| if (primitivec_ptr == nullptr || interrupt) { | |||
| interrupt = true; | |||
| if (primitivec_ptr == nullptr) { | |||
| NoSupportOp::GetInstance()->InsertOp(prim->name()); | |||
| } | |||
| return nullptr; | |||
| } | |||
| inputs.insert(inputs.begin(), NewValueNode(primitivec_ptr)); | |||
| CNodePtr cnode_ptr = outputFuncGraph->NewCNode(inputs); | |||
| if (cnode_ptr == nullptr) { | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "funcgraph new cnode failed"; | |||
| return nullptr; | |||
| } | |||
| @@ -700,40 +705,43 @@ bool AnfImporterFromProtobuf::BuildReturnForFuncGraph(const FuncGraphPtr &output | |||
| } | |||
| int AnfImporterFromProtobuf::ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, | |||
| const onnx::GraphProto &importProto, | |||
| const schema::QuantType &quantType) { | |||
| const onnx::GraphProto &importProto, | |||
| const schema::QuantType &quantType) { | |||
| if (outputFuncGraph == nullptr) { | |||
| MS_LOG(ERROR) << "funcgraph is nullptr"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| MS_LOG(INFO) << "The CNdoe size : " << importProto.node_size(); | |||
| CNodePtr cnode_ptr = nullptr; | |||
| int status = RET_OK; | |||
| for (int i = 0; i < importProto.node_size(); ++i) { | |||
| const onnx::NodeProto &node_proto = importProto.node(i); | |||
| const std::string &node_type = node_proto.op_type(); | |||
| if (node_type == kConstantValueNode) { | |||
| if (!BuildValueNodeForFuncGraph(node_proto)) { | |||
| if (status == RET_OK && !BuildValueNodeForFuncGraph(node_proto)) { | |||
| MS_LOG(ERROR) << "Build ValueNode for funcgraph fail at index: : " << i; | |||
| return RET_ERROR; | |||
| status = RET_ERROR; | |||
| } | |||
| continue; | |||
| } | |||
| cnode_ptr = BuildCNodeForFuncGraph(outputFuncGraph, node_proto, quantType); | |||
| if (cnode_ptr == nullptr) { | |||
| MS_LOG(ERROR) << "Build CNode for funcgraph fail at index: : " << i; | |||
| return RET_NULL_PTR; | |||
| status = (status == RET_OK ? RET_NULL_PTR : status); | |||
| } | |||
| } | |||
| if (status != RET_OK) { | |||
| return status; | |||
| } | |||
| if (!BuildReturnForFuncGraph(outputFuncGraph, importProto, cnode_ptr)) { | |||
| MS_LOG(ERROR) << "Build ReturnNode for funcgraph failed"; | |||
| return RET_ERROR; | |||
| status = RET_ERROR; | |||
| } | |||
| return RET_OK; | |||
| return status; | |||
| } | |||
| int AnfImporterFromProtobuf::BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto, | |||
| const schema::QuantType &quantType) { | |||
| const schema::QuantType &quantType) { | |||
| if (outputFuncGraph == nullptr) { | |||
| MS_LOG(ERROR) << "fundgraph is nullptr"; | |||
| return RET_NULL_PTR; | |||
| @@ -24,6 +24,7 @@ | |||
| #include "include/errorcode.h" | |||
| #include "tools/converter/parser/onnx/onnx.pb.h" | |||
| #include "tools/converter/converter_context.h" | |||
| #include "tools/anf_importer/anf_importer.h" | |||
| #include "abstract/abstract_value.h" | |||
| @@ -47,10 +48,10 @@ class AnfImporterFromProtobuf : public AnfImporter { | |||
| int AddReturnCNode() override { return RET_ERROR; }; | |||
| int ParseModelConfigureInfo(const onnx::ModelProto &model_proto); | |||
| int BuildFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto, | |||
| const schema::QuantType &quantType); | |||
| const schema::QuantType &quantType); | |||
| int ImportParametersForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto); | |||
| int ImportNodesForGraph(const FuncGraphPtr &outputFuncGraph, const onnx::GraphProto &importProto, | |||
| const schema::QuantType &quantType); | |||
| const schema::QuantType &quantType); | |||
| int BuildParameterForFuncGraph(const ParameterPtr &node, const onnx::ValueInfoProto &value_proto); | |||
| CNodePtr BuildCNodeForFuncGraph(const FuncGraphPtr &outputFuncGraph, const onnx::NodeProto &node_proto, | |||
| const schema::QuantType &quantType); | |||
| @@ -15,6 +15,8 @@ | |||
| */ | |||
| #include "tools/common/storage.h" | |||
| #include <sys/stat.h> | |||
| #include <unistd.h> | |||
| #include "flatbuffers/flatbuffers.h" | |||
| #include "utils/log_adapter.h" | |||
| #include "src/common/file_utils.h" | |||
| @@ -31,7 +33,10 @@ int Storage::Save(const schema::MetaGraphT &graph, const std::string &outputPath | |||
| MS_LOG(ERROR) << "GetBufferPointer nullptr"; | |||
| return RET_ERROR; | |||
| } | |||
| if (access((outputPath + ".ms").c_str(), F_OK) == 0) { | |||
| MS_LOG(WARNING) << "this file " << outputPath << ".ms has been existed"; | |||
| chmod((outputPath + ".ms").c_str(), S_IWUSR); | |||
| } | |||
| std::ofstream output(outputPath + ".ms", std::ofstream::binary); | |||
| if (!output.is_open()) { | |||
| MS_LOG(ERROR) << "Can not open output file: " << outputPath << ".ms"; | |||
| @@ -40,6 +45,7 @@ int Storage::Save(const schema::MetaGraphT &graph, const std::string &outputPath | |||
| output.write((const char *)content, size); | |||
| output.close(); | |||
| chmod((outputPath + ".ms").c_str(), S_IRUSR); | |||
| return RET_OK; | |||
| } | |||
| @@ -23,7 +23,7 @@ | |||
| #include "tools/converter/converter_flags.h" | |||
| #include "ir/anf.h" | |||
| #include "tools/converter/quantizer/quantizer.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| @@ -152,6 +152,7 @@ int RunConverter(int argc, const char **argv) { | |||
| return RET_INPUT_PARAM_INVALID; | |||
| } | |||
| } | |||
| NoSupportOp::GetInstance()->PrintOps(); | |||
| status = ReturnCode::GetSingleReturnCode()->GetReturnCode(); | |||
| if (fb_graph == nullptr) { | |||
| MS_LOG(ERROR) << "Convert model return nullptr"; | |||
| @@ -25,7 +25,7 @@ | |||
| #include "tools/anf_importer/anf_importer.h" | |||
| #include "tools/converter/converter_flags.h" | |||
| #include "tools/converter/anf_transform.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| @@ -17,13 +17,16 @@ | |||
| #ifndef LITE_RETURN_CODE_H | |||
| #define LITE_RETURN_CODE_H | |||
| #include <string> | |||
| #include <set> | |||
| #include "include/errorcode.h" | |||
| #include "utils/log_adapter.h" | |||
| namespace mindspore { | |||
| namespace lite { | |||
| class ReturnCode { | |||
| public: | |||
| ~ReturnCode() {} | |||
| ~ReturnCode() = default; | |||
| static ReturnCode *GetSingleReturnCode() { | |||
| static ReturnCode returnCode; | |||
| return &returnCode; | |||
| @@ -33,15 +36,31 @@ class ReturnCode { | |||
| statusCode = status; | |||
| } | |||
| } | |||
| STATUS GetReturnCode() const { | |||
| return statusCode; | |||
| } | |||
| STATUS GetReturnCode() const { return statusCode; } | |||
| private: | |||
| ReturnCode() { statusCode = RET_OK; } | |||
| int statusCode; | |||
| }; | |||
| class NoSupportOp { | |||
| public: | |||
| ~NoSupportOp() = default; | |||
| static NoSupportOp *GetInstance() { | |||
| static NoSupportOp noSupportOp; | |||
| return &noSupportOp; | |||
| } | |||
| void InsertOp(const std::string &op_name) { noSupportOps.insert(op_name); } | |||
| void PrintOps() const { | |||
| for (auto &op_name : noSupportOps) { | |||
| MS_LOG(ERROR) << "The op " << op_name << " hasn't been supported"; | |||
| } | |||
| } | |||
| private: | |||
| NoSupportOp() { noSupportOps.clear(); } | |||
| std::set<std::string> noSupportOps; | |||
| }; | |||
| } // namespace lite | |||
| } // namespace mindspore | |||
| #endif // LITE_RETURN_CODE_H | |||
| @@ -22,7 +22,7 @@ | |||
| #include "schema/inner/model_generated.h" | |||
| #include "tools/anf_importer/import_from_meta_graphT.h" | |||
| #include "ir/anf.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| namespace mindspore::lite { | |||
| using namespace schema; | |||
| @@ -40,7 +40,7 @@ class ModelParser { | |||
| return nullptr; | |||
| } | |||
| auto func_graph = this->Fb2Anf(meta_graph); | |||
| delete(meta_graph); | |||
| delete (meta_graph); | |||
| return func_graph; | |||
| } | |||
| @@ -84,6 +84,9 @@ schema::MetaGraphT *CaffeModelParser::ParseToFb(const std::string &modelFile, co | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "ParseLayer failed " << status; | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status); | |||
| for (auto &tensor : tensorCache.GetCachedTensor()) { | |||
| delete tensor; | |||
| } | |||
| return nullptr; | |||
| } | |||
| @@ -179,6 +182,8 @@ STATUS CaffeModelParser::SetGraphTensorIndex(const caffe::NetParameter &proto, T | |||
| STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caffe::NetParameter &weight, | |||
| TensorCache *tensorCache, schema::MetaGraphT *subGraphDef, | |||
| const QuantType &quantType) { | |||
| static bool interrupt = false; | |||
| int status = RET_OK; | |||
| for (int i = 0; i < proto.layer_size(); i++) { | |||
| auto layer = proto.layer(i); | |||
| @@ -222,38 +227,46 @@ STATUS CaffeModelParser::ParseLayer(const caffe::NetParameter &proto, const caff | |||
| } | |||
| continue; | |||
| } | |||
| auto status = SetOpInputIdx(layer, op.get(), tensorCache); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "Set Op " << layer.name() << " Input Index Failed!"; | |||
| return status; | |||
| } | |||
| auto nodeParser = CaffeNodeParserRegistry::GetInstance()->GetNodeParser(layer.type().c_str()); | |||
| if (nodeParser == nullptr) { | |||
| MS_LOG(ERROR) << "Don't support type " << layer.type() << ". for caffe op " << layer.name(); | |||
| return RET_NULL_PTR; | |||
| if (nodeParser == nullptr || interrupt) { | |||
| interrupt = true; | |||
| if (nodeParser == nullptr) { | |||
| NoSupportOp::GetInstance()->InsertOp(layer.type()); | |||
| status = (status == RET_OK ? RET_NOT_FIND_OP : status); | |||
| } | |||
| continue; | |||
| } | |||
| std::vector<schema::TensorT *> weightVec; | |||
| status = nodeParser->Parse(layer, layerP, op.get(), &weightVec); | |||
| if (status != RET_OK) { | |||
| auto status_node = nodeParser->Parse(layer, layerP, op.get(), &weightVec); | |||
| if (status_node != RET_OK) { | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "Parse weight for " << layer.name() << " Failed!"; | |||
| return status; | |||
| status = (status == RET_OK ? RET_NOT_FIND_OP : status); | |||
| continue; | |||
| } | |||
| status_node = SetOpInputIdx(layer, op.get(), tensorCache); | |||
| if (status_node != RET_OK) { | |||
| MS_LOG(ERROR) << "Set Op " << layer.name() << " Input Index Failed!"; | |||
| status = (status == RET_OK ? status_node : status); | |||
| } | |||
| SetWeightTensor(weightVec, op.get(), tensorCache); | |||
| status = SetOpOutputIdx(layer, op.get(), tensorCache); | |||
| if (status != RET_OK) { | |||
| status_node = SetOpOutputIdx(layer, op.get(), tensorCache); | |||
| if (status_node != RET_OK) { | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "Set Op " << layer.name() << " Output Index Failed!"; | |||
| return status; | |||
| status = (status == RET_OK ? RET_NOT_FIND_OP : status); | |||
| continue; | |||
| } | |||
| // op->fmkType = FmkType_CAFFE; | |||
| subGraphDef->nodes.emplace_back(move(op)); | |||
| } | |||
| } | |||
| return RET_OK; | |||
| return status; | |||
| } | |||
| STATUS CaffeModelParser::GetModelInput(const caffe::NetParameter &proto, TensorCache *tensorCache) { | |||
| @@ -249,6 +249,7 @@ STATUS OnnxModelParser::ParseOnnxNodeToDstOp(const onnx::GraphProto &onnx_graph, | |||
| schema::CNodeT *dst_op, schema::TensorT *dst_tensor, | |||
| TensorCache *tensor_cache, const QuantType &quantType) { | |||
| // change op_type() to name(), that is unique | |||
| static bool interrupt = false; | |||
| dst_op->name = onnx_node.op_type() + "_" + onnx_node.output(0); | |||
| dst_op->quantType = quantType; | |||
| // dst_op->fmkType = FmkType_ONNX; | |||
| @@ -256,15 +257,25 @@ STATUS OnnxModelParser::ParseOnnxNodeToDstOp(const onnx::GraphProto &onnx_graph, | |||
| << onnx_node.input_size(); | |||
| // get the real op type | |||
| SetOpQuantParams(onnx_graph, onnx_node, dst_op, dst_tensor, tensor_cache); | |||
| auto status = ParseOnnxNodeAttr(onnx_graph, onnx_node, onnx_node.op_type(), dst_op); | |||
| auto node_parser = OnnxNodeParserRegistry::GetInstance()->GetNodeParser(onnx_node.op_type()); | |||
| if (node_parser == nullptr || interrupt) { | |||
| interrupt = true; | |||
| if (node_parser == nullptr) { | |||
| NoSupportOp::GetInstance()->InsertOp(onnx_node.op_type()); | |||
| } | |||
| return RET_NOT_FIND_OP; | |||
| } | |||
| auto status = node_parser->Parse(onnx_graph, onnx_node, dst_op); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "parser onnx node attr failed"; | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "parser onnx node " << onnx_node.op_type() << " attr failed"; | |||
| return status; | |||
| } | |||
| // set op input index | |||
| std::vector<string> node_inputs; | |||
| (void)node_inputs.insert(node_inputs.begin(), onnx_node.input().begin(), onnx_node.input().end()); | |||
| if (SetOpInputIndex(node_inputs, dst_op, onnx_node, tensor_cache)) { | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "SetOpInputIndex failed"; | |||
| return RET_ERROR; | |||
| } | |||
| @@ -273,6 +284,7 @@ STATUS OnnxModelParser::ParseOnnxNodeToDstOp(const onnx::GraphProto &onnx_graph, | |||
| (void)node_outputs.insert(node_outputs.begin(), onnx_node.output().begin(), onnx_node.output().end()); | |||
| if (SetOpOutputIndex(node_outputs, dst_op, tensor_cache) != RET_OK) { | |||
| interrupt = true; | |||
| MS_LOG(ERROR) << "SetOpOutputIndex failed"; | |||
| return RET_ERROR; | |||
| } | |||
| @@ -340,8 +352,7 @@ STATUS OnnxModelParser::ParseOnnxNodeAttr(const onnx::GraphProto &onnx_graph, co | |||
| const string &onnx_op_type, schema::CNodeT *dst_op) { | |||
| auto node_parser = OnnxNodeParserRegistry::GetInstance()->GetNodeParser(onnx_op_type); | |||
| if (node_parser == nullptr) { | |||
| MS_LOG(ERROR) << "not find " << onnx_op_type << ", node parser is nullptr"; | |||
| return RET_NULL_PTR; | |||
| return RET_NOT_FIND_OP; | |||
| } | |||
| return node_parser->Parse(onnx_graph, onnx_node, dst_op); | |||
| } | |||
| @@ -503,32 +514,42 @@ schema::MetaGraphT *OnnxModelParser::ParseToFb(const std::string &modelFile, con | |||
| } | |||
| // init op node input/output tensor, and dst_op attr | |||
| for (const auto &onnx_node : onnx_graph.node()) { | |||
| int status_node = RET_OK; | |||
| if (onnx_node.op_type() == "Constant") { | |||
| continue; | |||
| } | |||
| if (onnx_node.op_type() == "Gemm") { | |||
| ParseOnnxGemmNode(onnx_graph, onnx_node, dst_graph.get(), &tensor_cache); | |||
| if (status == RET_OK) { | |||
| ParseOnnxGemmNode(onnx_graph, onnx_node, dst_graph.get(), &tensor_cache); | |||
| } | |||
| continue; | |||
| } else if (onnx_node.op_type() == "Int8GivenIntTensorFill" || onnx_node.op_type() == "Int8GivenTensorFill") { | |||
| status = ParseOnnxGivenFillNode(onnx_node, &tensor_cache); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "ParseOnnxGivenFillNode failed: " << status; | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status); | |||
| return nullptr; | |||
| if (status == RET_OK) { | |||
| status_node = ParseOnnxGivenFillNode(onnx_node, &tensor_cache); | |||
| if (status_node != RET_OK) { | |||
| MS_LOG(ERROR) << "ParseOnnxGivenFillNode failed: " << status_node; | |||
| status = (status == RET_OK ? status_node : status); | |||
| } | |||
| } | |||
| continue; | |||
| } | |||
| std::unique_ptr<schema::CNodeT> dst_op = std::make_unique<schema::CNodeT>(); | |||
| std::unique_ptr<schema::TensorT> dst_tensor = std::make_unique<schema::TensorT>(); | |||
| status = ParseOnnxNodeToDstOp(onnx_graph, onnx_node, dst_op.get(), dst_tensor.get(), &tensor_cache, quantType); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "parse node " << onnx_node.op_type() << " failed"; | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status); | |||
| return nullptr; | |||
| status_node = ParseOnnxNodeToDstOp(onnx_graph, onnx_node, dst_op.get(), dst_tensor.get(), &tensor_cache, quantType); | |||
| if (status_node != RET_OK) { | |||
| status = (status == RET_OK ? status_node : status); | |||
| continue; | |||
| } | |||
| dst_graph->nodes.emplace_back(std::move(dst_op)); | |||
| } | |||
| if (status != RET_OK) { | |||
| ReturnCode::GetSingleReturnCode()->UpdateReturnCode(status); | |||
| for (auto &tensor : tensor_cache.GetCachedTensor()) { | |||
| delete tensor; | |||
| } | |||
| return nullptr; | |||
| } | |||
| SetAllTensors(tensor_cache, dst_graph.get()); | |||
| dst_graph->name = GetModelName(modelFile); | |||
| return dst_graph.release(); | |||
| @@ -300,6 +300,15 @@ STATUS TfliteSingleInputOpParser::Parse(const std::unique_ptr<tflite::OperatorT> | |||
| } | |||
| op->primitive->value.type = schema::PrimitiveType_Floor; | |||
| op->primitive->value.value = attr.release(); | |||
| } else if (std::strcmp(node_name, "Neg") == 0) { | |||
| MS_LOG(DEBUG) << "parse TfliteNegParser"; | |||
| auto attr = std::make_unique<schema::NegT>(); | |||
| if (attr == nullptr) { | |||
| MS_LOG(ERROR) << "new op failed"; | |||
| return RET_NULL_PTR; | |||
| } | |||
| op->primitive->value.type = schema::PrimitiveType_Neg; | |||
| op->primitive->value.value = attr.release(); | |||
| } | |||
| AddOpInput(op, tensors_id, tensors_format, tensors_id_map, tflite_op->inputs[0], tensors_id->size(), | |||
| @@ -415,6 +424,7 @@ TfliteNodeRegister g_TfliteLogParser("Log", new TfliteLogParser()); | |||
| TfliteNodeRegister g_tfliteRoundParser("Round", new TfliteRoundParser()); | |||
| TfliteNodeRegister g_TfliteCeilParser("Ceil", new TfliteCeilParser()); | |||
| TfliteNodeRegister g_tfliteFloorParser("flOOR", new TfliteFloorParser()); | |||
| TfliteNodeRegister g_tfliteNegParser("Neg", new TfliteNegParser()); | |||
| TfliteNodeRegister g_tfliteEqualParser("Equal", new TfliteEqualParser()); | |||
| TfliteNodeRegister g_tfliteNotEqualParser("NotEqual", new TfliteNotEqualParser()); | |||
| @@ -157,6 +157,11 @@ class TfliteFloorParser : public TfliteSingleInputOpParser { | |||
| TfliteFloorParser() : TfliteSingleInputOpParser() {} | |||
| }; | |||
| class TfliteNegParser : public TfliteSingleInputOpParser { | |||
| public: | |||
| TfliteNegParser() : TfliteSingleInputOpParser() {} | |||
| }; | |||
| class TfliteCompareOpParser : public TfliteNodeParser { | |||
| public: | |||
| TfliteCompareOpParser() : TfliteNodeParser("node_name") {} | |||
| @@ -98,6 +98,7 @@ STATUS TfliteModelParser::ConvertOp(const std::unique_ptr<tflite::ModelT> &tflit | |||
| const std::unique_ptr<tflite::SubGraphT> &tflite_subgraph, | |||
| const QuantType &quant_type, schema::MetaGraphT *sub_graph) { | |||
| int idx = 0; | |||
| int status = RET_OK; | |||
| for (const auto &tflite_op : tflite_subgraph->operators) { | |||
| auto tflite_op_type = (tflite_model->operator_codes[tflite_op->opcode_index])->builtin_code; | |||
| auto op_type = GetMSOpType(tflite_op_type); | |||
| @@ -114,21 +115,24 @@ STATUS TfliteModelParser::ConvertOp(const std::unique_ptr<tflite::ModelT> &tflit | |||
| auto node_parser = TfliteNodeParserRegistry::GetInstance()->GetNodeParser(op_type); | |||
| if (node_parser == nullptr) { | |||
| MS_LOG(ERROR) << "cannot find node parser, opType: " << op_type.c_str(); | |||
| return RET_NOT_FIND_OP; | |||
| } | |||
| int status = node_parser->Parse(tflite_op, tflite_subgraph->tensors, tflite_model->buffers, op.get(), &tensorsId, | |||
| &tensorsFormat, &tensorsIdMap); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "node " << op_type.c_str() << " parser failed"; | |||
| return status; | |||
| NoSupportOp::GetInstance()->InsertOp(op_type); | |||
| status = (status == RET_OK ? RET_NOT_FIND_OP : status); | |||
| continue; | |||
| } | |||
| if (status == RET_OK) { | |||
| status = node_parser->Parse(tflite_op, tflite_subgraph->tensors, tflite_model->buffers, op.get(), &tensorsId, | |||
| &tensorsFormat, &tensorsIdMap); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "node " << op_type.c_str() << " parser failed"; | |||
| continue; | |||
| } | |||
| sub_graph->nodes.emplace_back(op.release()); | |||
| opMap[sub_graph->nodes.back()->name] = sub_graph->nodes.back().get(); | |||
| tfliteOpMap[tflite_op.get()] = sub_graph->nodes.back().get(); | |||
| sub_graph->nodes.emplace_back(op.release()); | |||
| opMap[sub_graph->nodes.back()->name] = sub_graph->nodes.back().get(); | |||
| tfliteOpMap[tflite_op.get()] = sub_graph->nodes.back().get(); | |||
| } | |||
| } | |||
| return RET_OK; | |||
| return status; | |||
| } | |||
| STATUS TfliteModelParser::ConvertTensor(const std::unique_ptr<tflite::SubGraphT> &tflite_subgraph, | |||
| @@ -162,8 +166,8 @@ STATUS TfliteModelParser::ConvertTensor(const std::unique_ptr<tflite::SubGraphT> | |||
| if (isConst) { | |||
| int status = CopyConstTensorData(tflite_model_buffer, tflite_tensor.get(), tensor.get()); | |||
| if (status != RET_OK) { | |||
| MS_LOG(ERROR) << "obtain const tensor failed"; | |||
| return status; | |||
| MS_LOG(ERROR) << "obtain const tensor failed"; | |||
| return status; | |||
| } | |||
| } | |||
| // set tensor attr | |||
| @@ -118,6 +118,7 @@ std::map<tflite::BuiltinOperator, std::string> tfMsOpTypeMap{ | |||
| {tflite::BuiltinOperator_UNPACK, "Unstack"}, | |||
| {tflite::BuiltinOperator_CUSTOM, "Custom"}, | |||
| {tflite::BuiltinOperator_MIRROR_PAD, "MirrorPad"}, | |||
| {tflite::BuiltinOperator_NEG, "Neg"}, | |||
| }; | |||
| std::map<tflite::ActivationFunctionType, schema::ActivationType> tfMsActivationFunctionMap{ | |||
| @@ -26,7 +26,7 @@ | |||
| #include "backend/optimizer/common/pattern_engine.h" | |||
| #include "schema/inner/model_generated.h" | |||
| #include "src/param_value_lite.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| using PrimitiveCPtr = std::shared_ptr<mindspore::lite::PrimitiveC>; | |||
| using mindspore::lite::RET_ERROR; | |||
| @@ -73,7 +73,7 @@ bool IsMultiOutputTensors(const FuncGraphPtr &graph, const AnfNodePtr &node); | |||
| size_t GetTupleGetItemOutIndex(const CNodePtr &tuple_get_item); | |||
| ParamValueLitePtr GetLiteParamValue(const AnfNodePtr &node); | |||
| ParamValueLitePtr GetLiteParamValue(const AnfNodePtr &node); | |||
| enum kTransFilterType { | |||
| kKCHW2HWCK, // 0 | |||
| @@ -105,11 +105,11 @@ STATUS GetFilterDim(const std::vector<int32_t> &oriDims, kTransFilterType type, | |||
| STATUS SetFilterDim(const ParamValueLitePtr &tensor, kTransFilterType type, int32_t filterK, int32_t filterC, | |||
| int32_t filterH, int32_t filterW); | |||
| template<typename T> | |||
| template <typename T> | |||
| static STATUS TransFilterData(const ParamValueLitePtr &tensor, kTransFilterType type, int32_t filterK, int32_t filterC, | |||
| int32_t filterH, int32_t filterW); | |||
| template<typename T> | |||
| template <typename T> | |||
| static lite::STATUS TransFilterFormat(const ParamValueLitePtr &tensor, kTransFilterType type); | |||
| STATUS TransFilterFormat(const ParamValueLitePtr &tensor, schema::Format dst_format); | |||
| @@ -18,7 +18,7 @@ | |||
| #define MINDSPORE_LITE_SRC_PASS_FUSION_CONV_BIASADD_FUSION_H_ | |||
| #include "backend/optimizer/common/optimizer.h" | |||
| #include "tools/converter/return_code.h" | |||
| #include "tools/converter/converter_context.h" | |||
| namespace mindspore { | |||
| namespace opt { | |||