|
|
|
@@ -0,0 +1,58 @@ |
|
|
|
# Copyright 2021 Huawei Technologies Co., Ltd |
|
|
|
# |
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License"); |
|
|
|
# you may not use this file except in compliance with the License. |
|
|
|
# You may obtain a copy of the License at |
|
|
|
# |
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0 |
|
|
|
# |
|
|
|
# Unless required by applicable law or agreed to in writing, software |
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS, |
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
|
|
# See the License for the specific language governing permissions and |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
|
|
|
|
import numpy as np |
|
|
|
import pytest |
|
|
|
|
|
|
|
import mindspore |
|
|
|
import mindspore.context as context |
|
|
|
import mindspore.nn as nn |
|
|
|
from mindspore import Tensor |
|
|
|
from mindspore.common.api import ms_function |
|
|
|
|
|
|
|
context.set_context(device_target='CPU') |
|
|
|
|
|
|
|
class NetNorm(nn.Cell): |
|
|
|
def __init__(self): |
|
|
|
super(NetNorm, self).__init__() |
|
|
|
|
|
|
|
self.norm_1 = nn.Norm(axis=0) |
|
|
|
self.norm_2 = nn.Norm(axis=1) |
|
|
|
self.norm_3 = nn.Norm(axis=-1) |
|
|
|
self.norm_4 = nn.Norm(axis=-1, keep_dims=True) |
|
|
|
|
|
|
|
@ms_function |
|
|
|
def construct(self, indices): |
|
|
|
return (self.norm_1(indices), |
|
|
|
self.norm_2(indices), |
|
|
|
self.norm_3(indices), |
|
|
|
self.norm_4(indices)) |
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
@pytest.mark.platform_x86_gpu_training |
|
|
|
@pytest.mark.env_onecard |
|
|
|
def test_norm(): |
|
|
|
norm = NetNorm() |
|
|
|
indices = Tensor(np.array([[4, 4, 9, 1], [2, 1, 3, 6]]), mindspore.float32) |
|
|
|
output = norm(indices) |
|
|
|
expect_0 = np.array([4.472136, 4.1231055, 9.486833, 6.0827627]).astype(np.float32) |
|
|
|
expect_1 = np.array([10.677078, 7.071068]).astype(np.float32) |
|
|
|
expect_2 = np.array([10.677078, 7.071068]).astype(np.float32) |
|
|
|
expect_3 = np.array([[10.677078], [7.071068]]).astype(np.float32) |
|
|
|
|
|
|
|
assert (output[0].asnumpy() == expect_0).all() |
|
|
|
assert (output[1].asnumpy() == expect_1).all() |
|
|
|
assert (output[2].asnumpy() == expect_2).all() |
|
|
|
assert (output[3].asnumpy() == expect_3).all() |