|
|
|
@@ -110,6 +110,10 @@ def _check_input_filter_size(input_shape, param_name, filter_size, func_name): |
|
|
|
validator.check(param_name + " shape[2]", input_shape[2], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
validator.check(param_name + " shape[3]", input_shape[3], "filter_size", filter_size, Rel.GE, func_name) |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _check_input_dtype(input_dtype, param_name, allow_dtypes, cls_name): |
|
|
|
validator.check_type_name(param_name, input_dtype, allow_dtypes, cls_name) |
|
|
|
|
|
|
|
class SSIM(Cell): |
|
|
|
r""" |
|
|
|
Returns SSIM index between img1 and img2. |
|
|
|
@@ -160,6 +164,7 @@ class SSIM(Cell): |
|
|
|
self.mean = P.DepthwiseConv2dNative(channel_multiplier=1, kernel_size=filter_size) |
|
|
|
|
|
|
|
def construct(self, img1, img2): |
|
|
|
_check_input_dtype(F.dtype(img1), "img1", [mstype.float32, mstype.float16], self.cls_name) |
|
|
|
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
|