|
|
|
@@ -125,13 +125,6 @@ class LSTM(Cell): |
|
|
|
self.num_layers = num_layers |
|
|
|
self.bidirectional = bidirectional |
|
|
|
self.dropout = dropout |
|
|
|
self.reverse_seq = P.ReverseSequence(batch_dim=1, seq_dim=0) |
|
|
|
self.concat = P.Concat(axis=0) |
|
|
|
self.concat_2dim = P.Concat(axis=2) |
|
|
|
self.cast = P.Cast() |
|
|
|
self.shape = P.Shape() |
|
|
|
if dropout != 0: |
|
|
|
self.dropout_op = nn.Dropout(float(dropout)) |
|
|
|
self.lstm = P.LSTM(input_size=input_size, |
|
|
|
hidden_size=hidden_size, |
|
|
|
num_layers=num_layers, |
|
|
|
@@ -143,36 +136,49 @@ class LSTM(Cell): |
|
|
|
gate_size = 4 * hidden_size |
|
|
|
stdv = 1 / math.sqrt(hidden_size) |
|
|
|
num_directions = 2 if bidirectional else 1 |
|
|
|
b0 = np.zeros(gate_size, dtype=np.float16) |
|
|
|
self.w_list = [] |
|
|
|
self.b_list = [] |
|
|
|
self.rnns_fw = P.DynamicRNN(forget_bias=0.0) |
|
|
|
self.rnns_bw = P.DynamicRNN(forget_bias=0.0) |
|
|
|
for layer in range(num_layers): |
|
|
|
input_layer_size = input_size if layer == 0 else hidden_size * num_directions |
|
|
|
increment_size = gate_size * input_layer_size |
|
|
|
increment_size += gate_size * hidden_size |
|
|
|
w_shape = input_size if layer == 0 else (num_directions * hidden_size) |
|
|
|
w_np = np.random.uniform(-stdv, stdv, (w_shape + hidden_size, gate_size)).astype(np.float16) |
|
|
|
self.w_list.append(Parameter( |
|
|
|
initializer(Tensor(w_np), [w_shape + hidden_size, gate_size]), name='weight_fw' + str(layer))) |
|
|
|
if has_bias: |
|
|
|
increment_size += 2 * gate_size |
|
|
|
b_np = np.random.uniform(-stdv, stdv, gate_size).astype(np.float16) |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b_np), [gate_size]), name='bias_fw' + str(layer))) |
|
|
|
else: |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b0), [gate_size]), name='bias_fw' + str(layer))) |
|
|
|
weight_size += increment_size * num_directions |
|
|
|
if bidirectional: |
|
|
|
w_bw_np = np.random.uniform(-stdv, stdv, (w_shape + hidden_size, gate_size)).astype(np.float16) |
|
|
|
self.w_list.append(Parameter(initializer(Tensor(w_bw_np), [w_shape + hidden_size, gate_size]), |
|
|
|
name='weight_bw' + str(layer))) |
|
|
|
b_bw_np = np.random.uniform(-stdv, stdv, (4 * hidden_size)).astype(np.float16) if has_bias else b0 |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b_bw_np), [gate_size]), name='bias_bw' + str(layer))) |
|
|
|
self.w_list = ParameterTuple(self.w_list) |
|
|
|
self.b_list = ParameterTuple(self.b_list) |
|
|
|
w_np = np.random.uniform(-stdv, stdv, (weight_size, 1, 1)).astype(np.float32) |
|
|
|
self.weight = Parameter(initializer(Tensor(w_np), [weight_size, 1, 1]), name='weight') |
|
|
|
if self.is_ascend: |
|
|
|
self.reverse_seq = P.ReverseSequence(batch_dim=1, seq_dim=0) |
|
|
|
self.concat = P.Concat(axis=0) |
|
|
|
self.concat_2dim = P.Concat(axis=2) |
|
|
|
self.cast = P.Cast() |
|
|
|
self.shape = P.Shape() |
|
|
|
if dropout != 0: |
|
|
|
self.dropout_op = nn.Dropout(float(dropout)) |
|
|
|
b0 = np.zeros(gate_size, dtype=np.float16) |
|
|
|
self.w_list = [] |
|
|
|
self.b_list = [] |
|
|
|
self.rnns_fw = P.DynamicRNN(forget_bias=0.0) |
|
|
|
self.rnns_bw = P.DynamicRNN(forget_bias=0.0) |
|
|
|
|
|
|
|
for layer in range(num_layers): |
|
|
|
w_shape = input_size if layer == 0 else (num_directions * hidden_size) |
|
|
|
w_np = np.random.uniform(-stdv, stdv, (w_shape + hidden_size, gate_size)).astype(np.float16) |
|
|
|
self.w_list.append(Parameter( |
|
|
|
initializer(Tensor(w_np), [w_shape + hidden_size, gate_size]), name='weight_fw' + str(layer))) |
|
|
|
if has_bias: |
|
|
|
b_np = np.random.uniform(-stdv, stdv, gate_size).astype(np.float16) |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b_np), [gate_size]), name='bias_fw' + str(layer))) |
|
|
|
else: |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b0), [gate_size]), name='bias_fw' + str(layer))) |
|
|
|
if bidirectional: |
|
|
|
w_bw_np = np.random.uniform(-stdv, stdv, (w_shape + hidden_size, gate_size)).astype(np.float16) |
|
|
|
self.w_list.append(Parameter(initializer(Tensor(w_bw_np), [w_shape + hidden_size, gate_size]), |
|
|
|
name='weight_bw' + str(layer))) |
|
|
|
b_bw_np = np.random.uniform(-stdv, stdv, (4 * hidden_size)).astype(np.float16) if has_bias else b0 |
|
|
|
self.b_list.append(Parameter(initializer(Tensor(b_bw_np), [gate_size]), |
|
|
|
name='bias_bw' + str(layer))) |
|
|
|
self.w_list = ParameterTuple(self.w_list) |
|
|
|
self.b_list = ParameterTuple(self.b_list) |
|
|
|
else: |
|
|
|
for layer in range(num_layers): |
|
|
|
input_layer_size = input_size if layer == 0 else hidden_size * num_directions |
|
|
|
increment_size = gate_size * input_layer_size |
|
|
|
increment_size += gate_size * hidden_size |
|
|
|
if has_bias: |
|
|
|
increment_size += 2 * gate_size |
|
|
|
weight_size += increment_size * num_directions |
|
|
|
w_np = np.random.uniform(-stdv, stdv, (weight_size, 1, 1)).astype(np.float32) |
|
|
|
self.weight = Parameter(initializer(Tensor(w_np), [weight_size, 1, 1]), name='weight') |
|
|
|
|
|
|
|
def _stacked_bi_dynamic_rnn(self, x, init_h, init_c, weight, bias): |
|
|
|
"""stacked bidirectional dynamic_rnn""" |
|
|
|
|