|
|
|
@@ -13,6 +13,7 @@ |
|
|
|
# limitations under the License. |
|
|
|
# ============================================================================ |
|
|
|
"""image""" |
|
|
|
import numbers |
|
|
|
import numpy as np |
|
|
|
import mindspore.common.dtype as mstype |
|
|
|
from mindspore.common.tensor import Tensor |
|
|
|
@@ -93,6 +94,16 @@ def _convert_img_dtype_to_float32(img, max_val): |
|
|
|
ret = ret * scale |
|
|
|
return ret |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _get_dtype_max(dtype): |
|
|
|
"""get max of the dtype""" |
|
|
|
np_type = mstype.dtype_to_nptype(dtype) |
|
|
|
if issubclass(np_type, numbers.Integral): |
|
|
|
dtype_max = np.float64(np.iinfo(np_type).max) |
|
|
|
else: |
|
|
|
dtype_max = 1.0 |
|
|
|
return dtype_max |
|
|
|
|
|
|
|
@constexpr |
|
|
|
def _check_input_4d(input_shape, param_name, func_name): |
|
|
|
if len(input_shape) != 4: |
|
|
|
@@ -224,9 +235,11 @@ class SSIM(Cell): |
|
|
|
_check_input_dtype(F.dtype(img1), "img1", [mstype.float32, mstype.float16], self.cls_name) |
|
|
|
_check_input_filter_size(F.shape(img1), "img1", self.filter_size, self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
dtype_max_val = _get_dtype_max(F.dtype(img1)) |
|
|
|
max_val = F.scalar_cast(self.max_val, F.dtype(img1)) |
|
|
|
max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, dtype_max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, dtype_max_val) |
|
|
|
|
|
|
|
c1 = (self.k1 * max_val) ** 2 |
|
|
|
c2 = (self.k2 * max_val) ** 2 |
|
|
|
@@ -309,10 +322,13 @@ class MSSSIM(Cell): |
|
|
|
def construct(self, img1, img2): |
|
|
|
_check_input_4d(F.shape(img1), "img1", self.cls_name) |
|
|
|
_check_input_4d(F.shape(img2), "img2", self.cls_name) |
|
|
|
_check_input_dtype(F.dtype(img1), 'img1', mstype.number_type, self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
dtype_max_val = _get_dtype_max(F.dtype(img1)) |
|
|
|
max_val = F.scalar_cast(self.max_val, F.dtype(img1)) |
|
|
|
max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, dtype_max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, dtype_max_val) |
|
|
|
|
|
|
|
c1 = (self.k1 * max_val) ** 2 |
|
|
|
c2 = (self.k2 * max_val) ** 2 |
|
|
|
@@ -375,9 +391,11 @@ class PSNR(Cell): |
|
|
|
_check_input_4d(F.shape(img1), "img1", self.cls_name) |
|
|
|
_check_input_4d(F.shape(img2), "img2", self.cls_name) |
|
|
|
P.SameTypeShape()(img1, img2) |
|
|
|
max_val = _convert_img_dtype_to_float32(self.max_val, self.max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, self.max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, self.max_val) |
|
|
|
dtype_max_val = _get_dtype_max(F.dtype(img1)) |
|
|
|
max_val = F.scalar_cast(self.max_val, F.dtype(img1)) |
|
|
|
max_val = _convert_img_dtype_to_float32(max_val, dtype_max_val) |
|
|
|
img1 = _convert_img_dtype_to_float32(img1, dtype_max_val) |
|
|
|
img2 = _convert_img_dtype_to_float32(img2, dtype_max_val) |
|
|
|
|
|
|
|
mse = P.ReduceMean()(F.square(img1 - img2), (-3, -2, -1)) |
|
|
|
psnr = 10 * P.Log()(F.square(max_val) / mse) / F.scalar_log(10.0) |
|
|
|
|