| @@ -481,6 +481,19 @@ class Conv2dTranspose(_Conv): | |||||
| Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number. | Input is typically of shape :math:`(N, C, H, W)`, where :math:`N` is batch size and :math:`C` is channel number. | ||||
| If the 'pad_mode' is set to be "pad", the height and width of output are defined as: | |||||
| .. math:: | |||||
| H_{out} = (H_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times | |||||
| (\text{ks_h} - 1) + 1 | |||||
| W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times | |||||
| (\text{ks_w} - 1) + 1 | |||||
| where :math:`\text{ks_h}` is the height of the convolution kernel and :math:`\text{ks_w}` is the width | |||||
| of the convolution kernel. | |||||
| Args: | Args: | ||||
| in_channels (int): The number of channels in the input space. | in_channels (int): The number of channels in the input space. | ||||
| out_channels (int): The number of channels in the output space. | out_channels (int): The number of channels in the output space. | ||||
| @@ -529,9 +542,10 @@ class Conv2dTranspose(_Conv): | |||||
| Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. | Tensor of shape :math:`(N, C_{out}, H_{out}, W_{out})`. | ||||
| Examples: | Examples: | ||||
| >>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal') | |||||
| >>> net = nn.Conv2dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') | |||||
| >>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32) | >>> input = Tensor(np.ones([1, 3, 16, 50]), mindspore.float32) | ||||
| >>> net(input) | |||||
| >>> net(input).shape | |||||
| (1, 64, 19, 53) | |||||
| """ | """ | ||||
| def __init__(self, | def __init__(self, | ||||
| @@ -654,6 +668,15 @@ class Conv1dTranspose(_Conv): | |||||
| Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number. | Input is typically of shape :math:`(N, C, W)`, where :math:`N` is batch size and :math:`C` is channel number. | ||||
| If the 'pad_mode' is set to be "pad", the width of output is defined as: | |||||
| .. math:: | |||||
| W_{out} = (W_{in} - 1) \times \text{stride} - 2 \times \text{padding} + \text{dilation} \times | |||||
| (\text{ks_w} - 1) + 1 | |||||
| where :math:`\text{ks_w}` is the width of the convolution kernel. | |||||
| Args: | Args: | ||||
| in_channels (int): The number of channels in the input space. | in_channels (int): The number of channels in the input space. | ||||
| out_channels (int): The number of channels in the output space. | out_channels (int): The number of channels in the output space. | ||||
| @@ -694,9 +717,10 @@ class Conv1dTranspose(_Conv): | |||||
| Tensor of shape :math:`(N, C_{out}, W_{out})`. | Tensor of shape :math:`(N, C_{out}, W_{out})`. | ||||
| Examples: | Examples: | ||||
| >>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal') | |||||
| >>> net = nn.Conv1dTranspose(3, 64, 4, has_bias=False, weight_init='normal', pad_mode='pad') | |||||
| >>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32) | >>> input = Tensor(np.ones([1, 3, 50]), mindspore.float32) | ||||
| >>> net(input) | |||||
| >>> net(input).shape | |||||
| (1, 64, 53) | |||||
| """ | """ | ||||
| def __init__(self, | def __init__(self, | ||||