|
|
@@ -28,6 +28,10 @@ from mindspore.model_zoo.mobilenet import mobilenet_v2 |
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context |
|
|
from mindspore.parallel._auto_parallel_context import auto_parallel_context |
|
|
from mindspore.nn.optim.momentum import Momentum |
|
|
from mindspore.nn.optim.momentum import Momentum |
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits |
|
|
from mindspore.nn.loss import SoftmaxCrossEntropyWithLogits |
|
|
|
|
|
from mindspore.nn.loss.loss import _Loss |
|
|
|
|
|
from mindspore.ops import operations as P |
|
|
|
|
|
from mindspore.ops import functional as F |
|
|
|
|
|
from mindspore.common import dtype as mstype |
|
|
|
|
|
|
|
|
from mindspore.train.model import Model, ParallelMode |
|
|
from mindspore.train.model import Model, ParallelMode |
|
|
|
|
|
|
|
|
@@ -54,6 +58,35 @@ context.set_context(enable_task_sink=True) |
|
|
context.set_context(enable_loop_sink=True) |
|
|
context.set_context(enable_loop_sink=True) |
|
|
context.set_context(enable_mem_reuse=True) |
|
|
context.set_context(enable_mem_reuse=True) |
|
|
|
|
|
|
|
|
|
|
|
class CrossEntropyWithLabelSmooth(_Loss): |
|
|
|
|
|
""" |
|
|
|
|
|
CrossEntropyWith LabelSmooth. |
|
|
|
|
|
|
|
|
|
|
|
Args: |
|
|
|
|
|
smooth_factor (float): smooth factor, default=0. |
|
|
|
|
|
num_classes (int): num classes |
|
|
|
|
|
|
|
|
|
|
|
Returns: |
|
|
|
|
|
None. |
|
|
|
|
|
|
|
|
|
|
|
Examples: |
|
|
|
|
|
>>> CrossEntropyWithLabelSmooth(smooth_factor=0., num_classes=1000) |
|
|
|
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
def __init__(self, smooth_factor=0., num_classes=1000): |
|
|
|
|
|
super(CrossEntropyWithLabelSmooth, self).__init__() |
|
|
|
|
|
self.onehot = P.OneHot() |
|
|
|
|
|
self.on_value = Tensor(1.0 - smooth_factor, mstype.float32) |
|
|
|
|
|
self.off_value = Tensor(1.0 * smooth_factor / (num_classes - 1), mstype.float32) |
|
|
|
|
|
self.ce = nn.SoftmaxCrossEntropyWithLogits() |
|
|
|
|
|
self.mean = P.ReduceMean(False) |
|
|
|
|
|
self.cast = P.Cast() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, logit, label): |
|
|
|
|
|
one_hot_label = self.onehot(self.cast(label, mstype.int32), F.shape(logit)[1], self.on_value, self.off_value) |
|
|
|
|
|
out_loss = self.ce(logit, one_hot_label) |
|
|
|
|
|
out_loss = self.mean(out_loss, 0) |
|
|
|
|
|
return out_loss |
|
|
|
|
|
|
|
|
class Monitor(Callback): |
|
|
class Monitor(Callback): |
|
|
""" |
|
|
""" |
|
|
@@ -63,7 +96,7 @@ class Monitor(Callback): |
|
|
lr_init (numpy array): train lr |
|
|
lr_init (numpy array): train lr |
|
|
|
|
|
|
|
|
Returns: |
|
|
Returns: |
|
|
None. |
|
|
|
|
|
|
|
|
None |
|
|
|
|
|
|
|
|
Examples: |
|
|
Examples: |
|
|
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) |
|
|
>>> Monitor(100,lr_init=Tensor([0.05]*100).asnumpy()) |
|
|
@@ -122,7 +155,10 @@ if __name__ == '__main__': |
|
|
for _, cell in net.cells_and_names(): |
|
|
for _, cell in net.cells_and_names(): |
|
|
if isinstance(cell, nn.Dense): |
|
|
if isinstance(cell, nn.Dense): |
|
|
cell.add_flags_recursive(fp32=True) |
|
|
cell.add_flags_recursive(fp32=True) |
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') |
|
|
|
|
|
|
|
|
if config.label_smooth > 0: |
|
|
|
|
|
loss = CrossEntropyWithLabelSmooth(smooth_factor=config.label_smooth, num_classes=config.num_classes) |
|
|
|
|
|
else: |
|
|
|
|
|
loss = SoftmaxCrossEntropyWithLogits(is_grad=False, sparse=True, reduction='mean') |
|
|
|
|
|
|
|
|
print("train args: ", args_opt, "\ncfg: ", config, |
|
|
print("train args: ", args_opt, "\ncfg: ", config, |
|
|
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) |
|
|
"\nparallel args: rank_id {}, device_id {}, rank_size {}".format(rank_id, device_id, rank_size)) |
|
|
|