Merge pull request !2010 from wangqiuliang/fix-tuple-to-array-issuetags/v0.5.0-beta
| @@ -15,7 +15,7 @@ | |||||
| """Parameter for cell.""" | """Parameter for cell.""" | ||||
| import numbers | import numbers | ||||
| from copy import copy, deepcopy | |||||
| from copy import copy | |||||
| from mindspore import context | from mindspore import context | ||||
| from . import dtype as mstype | from . import dtype as mstype | ||||
| from .initializer import initializer, Initializer | from .initializer import initializer, Initializer | ||||
| @@ -191,25 +191,16 @@ class Parameter: | |||||
| return self.default_input | return self.default_input | ||||
| def __add__(self, other): | def __add__(self, other): | ||||
| res = deepcopy(self) | |||||
| res.default_input = res.default_input + other | |||||
| return res | |||||
| return self.default_input + other | |||||
| def __sub__(self, other): | def __sub__(self, other): | ||||
| res = deepcopy(self) | |||||
| res.default_input = res.default_input - other | |||||
| return res | |||||
| return self.default_input - other | |||||
| def __mul__(self, other): | def __mul__(self, other): | ||||
| res = deepcopy(self) | |||||
| default_input = res.default_input * other | |||||
| res.default_input = Tensor(default_input.asnumpy().copy()) | |||||
| return res | |||||
| return self.default_input * other | |||||
| def __truediv__(self, other): | def __truediv__(self, other): | ||||
| res = deepcopy(self) | |||||
| res.default_input = res.default_input / other | |||||
| return res | |||||
| return self.default_input / other | |||||
| def __setitem__(self, index, value): | def __setitem__(self, index, value): | ||||
| return self | return self | ||||
| @@ -202,6 +202,7 @@ class Cell: | |||||
| if context.get_context("mode") == context.GRAPH_MODE: | if context.get_context("mode") == context.GRAPH_MODE: | ||||
| out = self.compile_and_run(*inputs) | out = self.compile_and_run(*inputs) | ||||
| return out | return out | ||||
| self.init_parameters_data() | |||||
| orign_grad = [] | orign_grad = [] | ||||
| if self.requires_grad is True: | if self.requires_grad is True: | ||||
| _pynative_exec.set_grad_flag(True) | _pynative_exec.set_grad_flag(True) | ||||
| @@ -254,9 +255,12 @@ class Cell: | |||||
| value.update_parameters_name(name + '.') | value.update_parameters_name(name + '.') | ||||
| cells[name] = value | cells[name] = value | ||||
| elif params and name in params: | elif params and name in params: | ||||
| if value is not None: | |||||
| if isinstance(value, Tensor) and self._params[name] is not None: | |||||
| self._params[name].set_parameter_data(value) | |||||
| elif value is not None: | |||||
| raise TypeError("Expected type in (Parameter, ParameterTuple), but got {}.".format(type(value))) | raise TypeError("Expected type in (Parameter, ParameterTuple), but got {}.".format(type(value))) | ||||
| self.insert_param_to_cell(name, None) | |||||
| else: | |||||
| self.insert_param_to_cell(name, None) | |||||
| elif cells and name in cells: | elif cells and name in cells: | ||||
| if value is not None: | if value is not None: | ||||
| raise TypeError("Expected type is cell, but got {}.".format(type(value))) | raise TypeError("Expected type is cell, but got {}.".format(type(value))) | ||||
| @@ -30,7 +30,7 @@ from ...common import dtype as mstype | |||||
| from ...common.tensor import Tensor | from ...common.tensor import Tensor | ||||
| from ..operations.math_ops import _infer_shape_reduce | from ..operations.math_ops import _infer_shape_reduce | ||||
| from .._utils import get_concat_offset | from .._utils import get_concat_offset | ||||
| from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register | |||||
| from ..primitive import Primitive, PrimitiveWithInfer, prim_attr_register, _run_op | |||||
| from ..._c_expression import signature_rw as sig_rw | from ..._c_expression import signature_rw as sig_rw | ||||
| from ..._c_expression import signature_kind as sig_kind | from ..._c_expression import signature_kind as sig_kind | ||||
| from ..._c_expression import signature_dtype as sig_dtype | from ..._c_expression import signature_dtype as sig_dtype | ||||
| @@ -983,9 +983,14 @@ class TupleToArray(PrimitiveWithInfer): | |||||
| ret = np.array(x, np.int32) | ret = np.array(x, np.int32) | ||||
| else: | else: | ||||
| ret = np.array(x, np.float32) | ret = np.array(x, np.float32) | ||||
| return Tensor(ret) | return Tensor(ret) | ||||
| def __call__(self, x): | |||||
| args = list() | |||||
| if isinstance(x, range): | |||||
| args.append(tuple(x)) | |||||
| return _run_op(self, self.name, args) | |||||
| class ScalarToArray(PrimitiveWithInfer): | class ScalarToArray(PrimitiveWithInfer): | ||||
| """ | """ | ||||
| @@ -0,0 +1,31 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| import numpy as np | |||||
| import mindspore as ms | |||||
| import mindspore.ops.operations as P | |||||
| from mindspore import context, Tensor | |||||
| def test_cast(): | |||||
| """ tests cast for same dtype""" | |||||
| context.set_context(mode=context.PYNATIVE_MODE, device_target="Ascend") | |||||
| input_np = np.random.randn(2, 3, 4, 5).astype(np.float32) | |||||
| input_x = Tensor(input_np) | |||||
| type_dst = ms.float32 | |||||
| cast = P.Cast() | |||||
| result = cast(input_x, type_dst) | |||||
| assert result.dtype() == type_dst | |||||
| @@ -52,11 +52,11 @@ class TestAdam(): | |||||
| use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | ||||
| def test_construct(self): | def test_construct(self): | ||||
| with pytest.raises(TypeError): | |||||
| with pytest.raises(RuntimeError): | |||||
| gradient = Tensor(np.zeros([1, 2, 3])) | gradient = Tensor(np.zeros([1, 2, 3])) | ||||
| adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, | adam = Adam(params, learning_rate=1e-3, beta1=0.9, beta2=0.999, eps=1e-8, use_locking=False, | ||||
| use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | use_nesterov=False, weight_decay=0.0, loss_scale=1.0) | ||||
| adam.construct(gradient) | |||||
| adam(gradient) | |||||
| class TestSGD(): | class TestSGD(): | ||||
| @@ -0,0 +1,67 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| """ test_tensor_operation """ | |||||
| import numpy as np | |||||
| import mindspore.nn as nn | |||||
| from mindspore import Tensor, Parameter | |||||
| from mindspore import context | |||||
| def setup_module(module): | |||||
| context.set_context(mode=context.PYNATIVE_MODE) | |||||
| def test_parameter_add(): | |||||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32)), name="ref") | |||||
| y = Tensor(np.ones((3, 3)).astype(np.float32)) | |||||
| expect = np.ones((3, 3)).astype(np.float32) * 2 | |||||
| z = x + y | |||||
| assert np.allclose(z.asnumpy(), expect) | |||||
| def test_parameter_sub(): | |||||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref") | |||||
| y = Tensor(np.ones((3, 3)).astype(np.float32)) | |||||
| expect = np.ones((3, 3)).astype(np.float32) | |||||
| z = x - y | |||||
| assert np.allclose(z.asnumpy(), expect) | |||||
| def test_parameter_mul(): | |||||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 2), name="ref") | |||||
| y = Tensor(np.ones((3, 3)).astype(np.float32) * 2) | |||||
| expect = np.ones((3, 3)).astype(np.float32) * 4 | |||||
| z = x * y | |||||
| assert np.allclose(z.asnumpy(), expect) | |||||
| def test_parameter_div(): | |||||
| x = Parameter(Tensor(np.ones((3, 3)).astype(np.float32) * 8), name="ref") | |||||
| y = Tensor(np.ones((3, 3)).astype(np.float32) * 2) | |||||
| expect = np.ones((3, 3)).astype(np.float32) * 4 | |||||
| z = x / y | |||||
| assert np.allclose(z.asnumpy(), expect) | |||||
| class ParameterNet(nn.Cell): | |||||
| def __init__(self): | |||||
| super(ParameterNet, self).__init__() | |||||
| self.weight = Parameter(Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0]], np.float32)), name="ref") | |||||
| def construct(self, x): | |||||
| self.weight = x | |||||
| def test_parameter_assign(): | |||||
| """test parameter assign with tensor""" | |||||
| input_x = Tensor(np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 8.0]], np.float32)) | |||||
| net = ParameterNet() | |||||
| net(input_x) | |||||
| assert np.allclose(net.weight.data.asnumpy(), input_x.asnumpy()) | |||||
| @@ -31,6 +31,7 @@ from mindspore.common.api import ms_function | |||||
| from mindspore.common.tensor import Tensor | from mindspore.common.tensor import Tensor | ||||
| from mindspore.ops.composite import core | from mindspore.ops.composite import core | ||||
| from mindspore.ops.primitive import constexpr | from mindspore.ops.primitive import constexpr | ||||
| from mindspore.ops import functional as F | |||||
| from ..ut_filter import non_graph_engine | from ..ut_filter import non_graph_engine | ||||
| @@ -427,3 +428,10 @@ def test_expr(): | |||||
| def tuple_len(x): | def tuple_len(x): | ||||
| assert len(x) == 2 | assert len(x) == 2 | ||||
| tuple_len(a) | tuple_len(a) | ||||
| def test_tuple_to_array(): | |||||
| """ test range tuple to array """ | |||||
| range_x = range(10) | |||||
| res = F.tuple_to_array(range_x) | |||||
| print(res) | |||||