Merge pull request !1390 from gengdongjie/mastertags/v0.3.0-alpha
| @@ -28,7 +28,7 @@ config = ed({ | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| "save_checkpoint": True, | |||
| "save_checkpoint_steps": 195, | |||
| "save_checkpoint_steps": 1950, | |||
| "keep_checkpoint_max": 10, | |||
| "save_checkpoint_path": "./", | |||
| "warmup_epochs": 5, | |||
| @@ -45,6 +45,7 @@ Parameters for both training and inference can be set in config.py. | |||
| "momentum": 0.9, # momentum optimizer | |||
| "weight_decay": 1e-4, # weight decay | |||
| "epoch_size": 90, # only valid for taining, which is always 1 for inference | |||
| "pretrained_epoch_size": 1, # epoch size that model has been trained before load pretrained checkpoint | |||
| "buffer_size": 1000, # number of queue size in data preprocessing | |||
| "image_height": 224, # image height | |||
| "image_width": 224, # image width | |||
| @@ -68,10 +69,11 @@ Parameters for both training and inference can be set in config.py. | |||
| ``` | |||
| # distributed training | |||
| Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] | |||
| Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| # standalone training | |||
| Usage: sh run_standalone_train.sh [DATASET_PATH] | |||
| Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional) | |||
| ``` | |||
| @@ -81,8 +83,14 @@ Usage: sh run_standalone_train.sh [DATASET_PATH] | |||
| # distributed training example(8 pcs) | |||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc | |||
| # If you want to load pretrained ckpt file | |||
| sh run_distribute_train.sh rank_table_8p.json dataset/ilsvrc ./pretrained.ckpt | |||
| # standalone training example(1 pcs) | |||
| sh run_standalone_train.sh dataset/ilsvrc | |||
| # If you want to load pretrained ckpt file | |||
| sh run_standalone_train.sh dataset/ilsvrc ./pretrained.ckpt | |||
| ``` | |||
| > About rank_table.json, you can refer to the [distributed training tutorial](https://www.mindspore.cn/tutorial/en/master/advanced_use/distributed_training.html). | |||
| @@ -24,6 +24,7 @@ config = ed({ | |||
| "momentum": 0.9, | |||
| "weight_decay": 1e-4, | |||
| "epoch_size": 90, | |||
| "pretrained_epoch_size": 1, | |||
| "buffer_size": 1000, | |||
| "image_height": 224, | |||
| "image_width": 224, | |||
| @@ -17,12 +17,11 @@ import math | |||
| import numpy as np | |||
| def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): | |||
| def get_lr(lr_init, lr_end, lr_max, warmup_epochs, total_epochs, steps_per_epoch, lr_decay_mode): | |||
| """ | |||
| generate learning rate array | |||
| Args: | |||
| global_step(int): total steps of the training | |||
| lr_init(float): init learning rate | |||
| lr_end(float): end learning rate | |||
| lr_max(float): max learning rate | |||
| @@ -83,8 +82,6 @@ def get_lr(global_step, lr_init, lr_end, lr_max, warmup_epochs, total_epochs, st | |||
| lr = lr_max - (lr_max - lr_end) * (i - warmup_steps) / (total_steps - warmup_steps) | |||
| lr_each_step.append(lr) | |||
| current_step = global_step | |||
| lr_each_step = np.array(lr_each_step).astype(np.float32) | |||
| learning_rate = lr_each_step[current_step:] | |||
| learning_rate = np.array(lr_each_step).astype(np.float32) | |||
| return learning_rate | |||
| @@ -14,9 +14,9 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 2 ] | |||
| if [ $# != 2 ] && [ $# != 3 ] | |||
| then | |||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH]" | |||
| echo "Usage: sh run_distribute_train.sh [MINDSPORE_HCCL_CONFIG_PATH] [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| @@ -30,6 +30,10 @@ get_real_path(){ | |||
| PATH1=$(get_real_path $1) | |||
| PATH2=$(get_real_path $2) | |||
| if [ $# == 3 ] | |||
| then | |||
| PATH3=$(get_real_path $3) | |||
| fi | |||
| if [ ! -f "$PATH1" ] | |||
| then | |||
| @@ -43,6 +47,12 @@ then | |||
| exit 1 | |||
| fi | |||
| if [ ! -f "$PATH3" ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH3 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=8 | |||
| export RANK_SIZE=8 | |||
| @@ -60,6 +70,11 @@ do | |||
| cd ./train_parallel$i || exit | |||
| echo "start training for rank $RANK_ID, device $DEVICE_ID" | |||
| env > env.log | |||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||
| if [ $# == 2 ] | |||
| then | |||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 &> log & | |||
| else | |||
| python train.py --do_train=True --run_distribute=True --device_num=$DEVICE_NUM --dataset_path=$PATH2 --pre_trained=$PATH3 &> log & | |||
| fi | |||
| cd .. | |||
| done | |||
| @@ -14,9 +14,9 @@ | |||
| # limitations under the License. | |||
| # ============================================================================ | |||
| if [ $# != 1 ] | |||
| if [ $# != 1 ] && [ $# != 2 ] | |||
| then | |||
| echo "Usage: sh run_standalone_train.sh [DATASET_PATH]" | |||
| echo "Usage: sh run_standalone_train.sh [DATASET_PATH] [PRETRAINED_CKPT_PATH](optional)" | |||
| exit 1 | |||
| fi | |||
| @@ -29,6 +29,10 @@ get_real_path(){ | |||
| } | |||
| PATH1=$(get_real_path $1) | |||
| if [ $# == 2 ] | |||
| then | |||
| PATH2=$(get_real_path $2) | |||
| fi | |||
| if [ ! -d "$PATH1" ] | |||
| then | |||
| @@ -36,6 +40,12 @@ then | |||
| exit 1 | |||
| fi | |||
| if [ ! -f "$PATH2" ] | |||
| then | |||
| echo "error: PRETRAINED_CKPT_PATH=$PATH2 is not a file" | |||
| exit 1 | |||
| fi | |||
| ulimit -u unlimited | |||
| export DEVICE_NUM=1 | |||
| export DEVICE_ID=0 | |||
| @@ -51,5 +61,10 @@ cp *.sh ./train | |||
| cd ./train || exit | |||
| echo "start training for device $DEVICE_ID" | |||
| env > env.log | |||
| python train.py --do_train=True --dataset_path=$PATH1 &> log & | |||
| if [ $# == 1 ] | |||
| then | |||
| python train.py --do_train=True --dataset_path=$PATH1 &> log & | |||
| else | |||
| python train.py --do_train=True --dataset_path=$PATH1 --pre_trained=$PATH2 &> log & | |||
| fi | |||
| cd .. | |||
| @@ -28,6 +28,7 @@ from mindspore.train.model import Model, ParallelMode | |||
| from mindspore.train.callback import ModelCheckpoint, CheckpointConfig, LossMonitor, TimeMonitor | |||
| from mindspore.train.loss_scale_manager import FixedLossScaleManager | |||
| from mindspore.train.serialization import load_checkpoint, load_param_into_net | |||
| from mindspore.communication.management import init | |||
| import mindspore.nn as nn | |||
| import mindspore.common.initializer as weight_init | |||
| @@ -39,6 +40,7 @@ parser.add_argument('--device_num', type=int, default=1, help='Device num.') | |||
| parser.add_argument('--do_train', type=bool, default=True, help='Do train or not.') | |||
| parser.add_argument('--do_eval', type=bool, default=False, help='Do eval or not.') | |||
| parser.add_argument('--dataset_path', type=str, default=None, help='Dataset path') | |||
| parser.add_argument('--pre_trained', type=str, default=None, help='Pretrained checkpoint path') | |||
| args_opt = parser.parse_args() | |||
| device_id = int(os.getenv('DEVICE_ID')) | |||
| @@ -58,15 +60,20 @@ if __name__ == '__main__': | |||
| net = resnet50(class_num=config.class_num) | |||
| # weight init | |||
| for _, cell in net.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if isinstance(cell, nn.Dense): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if args_opt.pre_trained: | |||
| param_dict = load_checkpoint(args_opt.pre_trained) | |||
| load_param_into_net(net, param_dict) | |||
| epoch_size = config.epoch_size - config.pretrained_epoch_size | |||
| else: | |||
| for _, cell in net.cells_and_names(): | |||
| if isinstance(cell, nn.Conv2d): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.XavierUniform(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if isinstance(cell, nn.Dense): | |||
| cell.weight.default_input = weight_init.initializer(weight_init.TruncatedNormal(), | |||
| cell.weight.default_input.shape(), | |||
| cell.weight.default_input.dtype()).to_tensor() | |||
| if not config.use_label_smooth: | |||
| config.label_smooth_factor = 0.0 | |||
| @@ -78,9 +85,11 @@ if __name__ == '__main__': | |||
| step_size = dataset.get_dataset_size() | |||
| loss_scale = FixedLossScaleManager(config.loss_scale, drop_overflow_update=False) | |||
| lr = Tensor(get_lr(global_step=0, lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, | |||
| warmup_epochs=config.warmup_epochs, total_epochs=epoch_size, steps_per_epoch=step_size, | |||
| lr_decay_mode='cosine')) | |||
| lr = get_lr(lr_init=config.lr_init, lr_end=0.0, lr_max=config.lr_max, warmup_epochs=config.warmup_epochs, | |||
| total_epochs=config.epoch_size, steps_per_epoch=step_size, lr_decay_mode='cosine') | |||
| if args_opt.pre_trained: | |||
| lr = lr[config.pretrained_epoch_size * step_size:] | |||
| lr = Tensor(lr) | |||
| opt = Momentum(filter(lambda x: x.requires_grad, net.get_parameters()), lr, config.momentum, | |||
| config.weight_decay, config.loss_scale) | |||