|
|
@@ -15,6 +15,7 @@ |
|
|
import os |
|
|
import os |
|
|
import tempfile |
|
|
import tempfile |
|
|
import pytest |
|
|
import pytest |
|
|
|
|
|
import scipy |
|
|
import numpy as np |
|
|
import numpy as np |
|
|
import mindspore.nn as nn |
|
|
import mindspore.nn as nn |
|
|
import mindspore.ops.operations as P |
|
|
import mindspore.ops.operations as P |
|
|
@@ -395,3 +396,24 @@ def test_summary(): |
|
|
event = summary_writer.read_event() |
|
|
event = summary_writer.read_event() |
|
|
tags = set(value.tag for value in event.summary.value) |
|
|
tags = set(value.tag for value in event.summary.value) |
|
|
assert tags == {'tensor', 'histogram', 'scalar', 'image'} |
|
|
assert tags == {'tensor', 'histogram', 'scalar', 'image'} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.mark.level0 |
|
|
|
|
|
@pytest.mark.platform_arm_ascend_training |
|
|
|
|
|
@pytest.mark.platform_x86_ascend_training |
|
|
|
|
|
@pytest.mark.env_onecard |
|
|
|
|
|
def test_igamma(): |
|
|
|
|
|
class IGammaTest(nn.Cell): |
|
|
|
|
|
def __init__(self): |
|
|
|
|
|
super().__init__() |
|
|
|
|
|
self.igamma = nn.IGamma() |
|
|
|
|
|
|
|
|
|
|
|
def construct(self, x, a): |
|
|
|
|
|
return self.igamma(a=a, x=x) |
|
|
|
|
|
|
|
|
|
|
|
x = 4.22 |
|
|
|
|
|
a = 2.29 |
|
|
|
|
|
net = IGammaTest() |
|
|
|
|
|
out = net(Tensor(x, mstype.float32), Tensor(a, mstype.float32)) |
|
|
|
|
|
expect = scipy.special.gammainc(a, x) |
|
|
|
|
|
assert np.allclose(out.asnumpy(), expect, rtol=1e-5, atol=1e-5, equal_nan=True) |