| @@ -370,6 +370,11 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) | |||||
| if (!input_cv->mat().data) { | if (!input_cv->mat().data) { | ||||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | ||||
| } | } | ||||
| if (input_cv->Rank() == 2) { | |||||
| // If input tensor is 2D, we assume we have hw dimensions | |||||
| *output = input; | |||||
| return Status::OK(); | |||||
| } | |||||
| if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | ||||
| RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | ||||
| } | } | ||||
| @@ -395,9 +400,6 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) | |||||
| Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) { | Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) { | ||||
| try { | try { | ||||
| std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input)); | std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input)); | ||||
| if (!input_cv->mat().data) { | |||||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | |||||
| } | |||||
| if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | ||||
| RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | ||||
| } | } | ||||
| @@ -714,7 +716,10 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output | |||||
| } | } | ||||
| std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(out_image); | std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(out_image); | ||||
| RETURN_UNEXPECTED_IF_NULL(output_cv); | RETURN_UNEXPECTED_IF_NULL(output_cv); | ||||
| // pad the dimension if shape information is only 2 dimensional, this is grayscale | |||||
| if (input_cv->Rank() == 3 && input_cv->shape()[2] == 1 && output_cv->Rank() == 2) output_cv->ExpandDim(2); | |||||
| *output = std::static_pointer_cast<Tensor>(output_cv); | *output = std::static_pointer_cast<Tensor>(output_cv); | ||||
| return Status::OK(); | return Status::OK(); | ||||
| } catch (const cv::Exception &e) { | } catch (const cv::Exception &e) { | ||||
| RETURN_STATUS_UNEXPECTED("Unexpected error in pad"); | RETURN_STATUS_UNEXPECTED("Unexpected error in pad"); | ||||
| @@ -108,9 +108,42 @@ def test_center_crop_comp(height=375, width=375, plot=False): | |||||
| visualize(image, image_cropped) | visualize(image, image_cropped) | ||||
| def test_crop_grayscale(height=375, width=375): | |||||
| """ | |||||
| Test that centercrop works with pad and grayscale images | |||||
| """ | |||||
| def channel_swap(image): | |||||
| """ | |||||
| Py func hack for our pytransforms to work with c transforms | |||||
| """ | |||||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||||
| transforms = [ | |||||
| py_vision.Decode(), | |||||
| py_vision.Grayscale(1), | |||||
| py_vision.ToTensor(), | |||||
| (lambda image: channel_swap(image)) | |||||
| ] | |||||
| transform = py_vision.ComposeOp(transforms) | |||||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||||
| # if input is grayscale, the output dimensions should be single channel | |||||
| crop_gray = vision.CenterCrop([height, width]) | |||||
| data1 = data1.map(input_columns=["image"], operations=crop_gray) | |||||
| for item1 in data1.create_dict_iterator(): | |||||
| c_image = item1["image"] | |||||
| # check that the image is grayscale | |||||
| assert (len(c_image.shape) == 3 and c_image.shape[2] == 1) | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| test_center_crop_op(600, 600) | test_center_crop_op(600, 600) | ||||
| test_center_crop_op(300, 600) | test_center_crop_op(300, 600) | ||||
| test_center_crop_op(600, 300) | test_center_crop_op(600, 300) | ||||
| test_center_crop_md5(600, 600) | |||||
| test_center_crop_md5() | |||||
| test_center_crop_comp() | test_center_crop_comp() | ||||
| test_crop_grayscale() | |||||
| @@ -22,34 +22,11 @@ import numpy as np | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| import mindspore.dataset.transforms.vision.py_transforms as py_vision | import mindspore.dataset.transforms.vision.py_transforms as py_vision | ||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| from util import diff_mse | |||||
| DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | ||||
| SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | ||||
| def visualize(first, mse, second): | |||||
| """ | |||||
| visualizes the image using DE op and enCV | |||||
| """ | |||||
| plt.subplot(141) | |||||
| plt.imshow(first) | |||||
| plt.title("c transformed image") | |||||
| plt.subplot(142) | |||||
| plt.imshow(second) | |||||
| plt.title("py random_color_jitter image") | |||||
| plt.subplot(143) | |||||
| plt.imshow(first - second) | |||||
| plt.title("Difference image, mse : {}".format(mse)) | |||||
| plt.show() | |||||
| def diff_mse(in1, in2): | |||||
| mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean() | |||||
| return mse * 100 | |||||
| def test_pad_op(): | def test_pad_op(): | ||||
| """ | """ | ||||
| Test Pad op | Test Pad op | ||||
| @@ -77,9 +54,7 @@ def test_pad_op(): | |||||
| data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | ||||
| data2 = data2.map(input_columns=["image"], operations=transform()) | data2 = data2.map(input_columns=["image"], operations=transform()) | ||||
| num_iter = 0 | |||||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | ||||
| num_iter += 1 | |||||
| c_image = item1["image"] | c_image = item1["image"] | ||||
| py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | ||||
| @@ -89,11 +64,60 @@ def test_pad_op(): | |||||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | logger.info("dtype of c_image: {}".format(c_image.dtype)) | ||||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | logger.info("dtype of py_image: {}".format(py_image.dtype)) | ||||
| diff = c_image - py_image | |||||
| mse = diff_mse(c_image, py_image) | mse = diff_mse(c_image, py_image) | ||||
| logger.info("mse is {}".format(mse)) | logger.info("mse is {}".format(mse)) | ||||
| assert mse < 0.01 | assert mse < 0.01 | ||||
| def test_pad_grayscale(): | |||||
| """ | |||||
| Tests that the pad works for grayscale images | |||||
| """ | |||||
| def channel_swap(image): | |||||
| """ | |||||
| Py func hack for our pytransforms to work with c transforms | |||||
| """ | |||||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||||
| transforms = [ | |||||
| py_vision.Decode(), | |||||
| py_vision.Grayscale(1), | |||||
| py_vision.ToTensor(), | |||||
| (lambda image: channel_swap(image)) | |||||
| ] | |||||
| transform = py_vision.ComposeOp(transforms) | |||||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||||
| # if input is grayscale, the output dimensions should be single channel | |||||
| pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20)) | |||||
| data1 = data1.map(input_columns=["image"], operations=pad_gray) | |||||
| dataset_shape_1 = [] | |||||
| for item1 in data1.create_dict_iterator(): | |||||
| c_image = item1["image"] | |||||
| dataset_shape_1.append(c_image.shape) | |||||
| # Dataset for comparison | |||||
| data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||||
| decode_op = c_vision.Decode() | |||||
| # we use the same padding logic | |||||
| ctrans = [decode_op, pad_gray] | |||||
| dataset_shape_2 = [] | |||||
| data2 = data2.map(input_columns=["image"], operations=ctrans) | |||||
| for item2 in data2.create_dict_iterator(): | |||||
| c_image = item2["image"] | |||||
| dataset_shape_2.append(c_image.shape) | |||||
| for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2): | |||||
| # validate that the first two dimensions are the same | |||||
| # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale | |||||
| assert (shape1[0:1] == shape2[0:1]) | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| test_pad_op() | test_pad_op() | ||||
| test_pad_grayscale() | |||||
| @@ -22,6 +22,7 @@ import numpy as np | |||||
| import mindspore.dataset as ds | import mindspore.dataset as ds | ||||
| import mindspore.dataset.transforms.vision.py_transforms as py_vision | import mindspore.dataset.transforms.vision.py_transforms as py_vision | ||||
| from mindspore import log as logger | from mindspore import log as logger | ||||
| from util import diff_mse | |||||
| DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | ||||
| SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | ||||
| @@ -29,7 +30,7 @@ SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | |||||
| def visualize(first, mse, second): | def visualize(first, mse, second): | ||||
| """ | """ | ||||
| visualizes the image using DE op and enCV | |||||
| visualizes the image using DE op and OpenCV | |||||
| """ | """ | ||||
| plt.subplot(141) | plt.subplot(141) | ||||
| plt.imshow(first) | plt.imshow(first) | ||||
| @@ -45,12 +46,7 @@ def visualize(first, mse, second): | |||||
| plt.show() | plt.show() | ||||
| def diff_mse(in1, in2): | |||||
| mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean() | |||||
| return mse * 100 | |||||
| def test_random_color_adjust_op_brightness(): | |||||
| def test_random_color_adjust_op_brightness(plot=False): | |||||
| """ | """ | ||||
| Test RandomColorAdjust op | Test RandomColorAdjust op | ||||
| """ | """ | ||||
| @@ -92,15 +88,16 @@ def test_random_color_adjust_op_brightness(): | |||||
| mse = diff_mse(c_image, py_image) | mse = diff_mse(c_image, py_image) | ||||
| logger.info("mse is {}".format(mse)) | logger.info("mse is {}".format(mse)) | ||||
| logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||||
| assert mse < 0.01 | assert mse < 0.01 | ||||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||||
| # if mse != 0: | # if mse != 0: | ||||
| # logger.info("mse is: {}".format(mse)) | # logger.info("mse is: {}".format(mse)) | ||||
| # Uncomment below line if you want to visualize images | |||||
| # visualize(c_image, mse, py_image) | |||||
| if plot: | |||||
| visualize(c_image, mse, py_image) | |||||
| def test_random_color_adjust_op_contrast(): | |||||
| def test_random_color_adjust_op_contrast(plot=False): | |||||
| """ | """ | ||||
| Test RandomColorAdjust op | Test RandomColorAdjust op | ||||
| """ | """ | ||||
| @@ -139,11 +136,10 @@ def test_random_color_adjust_op_contrast(): | |||||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | logger.info("dtype of c_image: {}".format(c_image.dtype)) | ||||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | logger.info("dtype of py_image: {}".format(py_image.dtype)) | ||||
| diff = c_image - py_image | diff = c_image - py_image | ||||
| logger.info("contrast difference c is : {}".format(c_image[0][0])) | logger.info("contrast difference c is : {}".format(c_image[0][0])) | ||||
| logger.info("contrast difference py is : {}".format(py_image[0][0])) | logger.info("contrast difference py is : {}".format(py_image[0][0])) | ||||
| diff = c_image - py_image | |||||
| logger.info("contrast difference is : {}".format(diff[0][0])) | logger.info("contrast difference is : {}".format(diff[0][0])) | ||||
| # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | ||||
| mse = diff_mse(c_image, py_image) | mse = diff_mse(c_image, py_image) | ||||
| @@ -152,11 +148,11 @@ def test_random_color_adjust_op_contrast(): | |||||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | ||||
| # if mse != 0: | # if mse != 0: | ||||
| # logger.info("mse is: {}".format(mse)) | # logger.info("mse is: {}".format(mse)) | ||||
| # Uncomment below line if you want to visualize images | |||||
| # visualize(c_image, mse, py_image) | |||||
| if plot: | |||||
| visualize(c_image, mse, py_image) | |||||
| def test_random_color_adjust_op_saturation(): | |||||
| def test_random_color_adjust_op_saturation(plot=False): | |||||
| """ | """ | ||||
| Test RandomColorAdjust op | Test RandomColorAdjust op | ||||
| """ | """ | ||||
| @@ -197,19 +193,17 @@ def test_random_color_adjust_op_saturation(): | |||||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | logger.info("dtype of c_image: {}".format(c_image.dtype)) | ||||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | logger.info("dtype of py_image: {}".format(py_image.dtype)) | ||||
| diff = c_image - py_image | |||||
| mse = diff_mse(c_image, py_image) | mse = diff_mse(c_image, py_image) | ||||
| logger.info("mse is {}".format(mse)) | logger.info("mse is {}".format(mse)) | ||||
| assert mse < 0.01 | assert mse < 0.01 | ||||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | ||||
| # if mse != 0: | # if mse != 0: | ||||
| # logger.info("mse is: {}".format(mse)) | # logger.info("mse is: {}".format(mse)) | ||||
| # Uncomment below line if you want to visualize images | |||||
| # visualize(c_image, mse, py_image) | |||||
| if plot: | |||||
| visualize(c_image, mse, py_image) | |||||
| def test_random_color_adjust_op_hue(): | |||||
| def test_random_color_adjust_op_hue(plot=False): | |||||
| """ | """ | ||||
| Test RandomColorAdjust op | Test RandomColorAdjust op | ||||
| """ | """ | ||||
| @@ -251,13 +245,45 @@ def test_random_color_adjust_op_hue(): | |||||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | logger.info("dtype of py_image: {}".format(py_image.dtype)) | ||||
| # logger.info("dtype of img: {}".format(img.dtype)) | # logger.info("dtype of img: {}".format(img.dtype)) | ||||
| diff = c_image - py_image | |||||
| # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | ||||
| mse = diff_mse(c_image, py_image) | mse = diff_mse(c_image, py_image) | ||||
| logger.info("mse is {}".format(mse)) | logger.info("mse is {}".format(mse)) | ||||
| assert mse < 0.01 | assert mse < 0.01 | ||||
| # Uncomment below line if you want to visualize images | |||||
| # visualize(c_image, mse, py_image) | |||||
| if plot: | |||||
| visualize(c_image, mse, py_image) | |||||
| def test_random_color_adjust_grayscale(): | |||||
| """ | |||||
| Tests that the random color adjust works for grayscale images | |||||
| """ | |||||
| def channel_swap(image): | |||||
| """ | |||||
| Py func hack for our pytransforms to work with c transforms | |||||
| """ | |||||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||||
| transforms = [ | |||||
| py_vision.Decode(), | |||||
| py_vision.Grayscale(1), | |||||
| py_vision.ToTensor(), | |||||
| (lambda image: channel_swap(image)) | |||||
| ] | |||||
| transform = py_vision.ComposeOp(transforms) | |||||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||||
| # if input is grayscale, the output dimensions should be single channel, the following should fail | |||||
| random_adjust_op = c_vision.RandomColorAdjust((1, 1), (1, 1), (1, 1), (0.2, 0.2)) | |||||
| try: | |||||
| data1 = data1.map(input_columns=["image"], operations=random_adjust_op) | |||||
| dataset_shape_1 = [] | |||||
| for item1 in data1.create_dict_iterator(): | |||||
| c_image = item1["image"] | |||||
| dataset_shape_1.append(c_image.shape) | |||||
| except BaseException as e: | |||||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||||
| if __name__ == "__main__": | if __name__ == "__main__": | ||||
| @@ -265,3 +291,4 @@ if __name__ == "__main__": | |||||
| test_random_color_adjust_op_contrast() | test_random_color_adjust_op_contrast() | ||||
| test_random_color_adjust_op_saturation() | test_random_color_adjust_op_saturation() | ||||
| test_random_color_adjust_op_hue() | test_random_color_adjust_op_hue() | ||||
| test_random_color_adjust_grayscale() | |||||