| @@ -370,6 +370,11 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) | |||
| if (!input_cv->mat().data) { | |||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | |||
| } | |||
| if (input_cv->Rank() == 2) { | |||
| // If input tensor is 2D, we assume we have hw dimensions | |||
| *output = input; | |||
| return Status::OK(); | |||
| } | |||
| if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | |||
| RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | |||
| } | |||
| @@ -395,9 +400,6 @@ Status HwcToChw(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) | |||
| Status SwapRedAndBlue(std::shared_ptr<Tensor> input, std::shared_ptr<Tensor> *output) { | |||
| try { | |||
| std::shared_ptr<CVTensor> input_cv = CVTensor::AsCVTensor(std::move(input)); | |||
| if (!input_cv->mat().data) { | |||
| RETURN_STATUS_UNEXPECTED("Could not convert to CV Tensor"); | |||
| } | |||
| if (input_cv->shape().Size() != 3 && input_cv->shape()[2] != 3) { | |||
| RETURN_STATUS_UNEXPECTED("The shape is incorrect: number of channels is not equal 3"); | |||
| } | |||
| @@ -714,7 +716,10 @@ Status Pad(const std::shared_ptr<Tensor> &input, std::shared_ptr<Tensor> *output | |||
| } | |||
| std::shared_ptr<CVTensor> output_cv = std::make_shared<CVTensor>(out_image); | |||
| RETURN_UNEXPECTED_IF_NULL(output_cv); | |||
| // pad the dimension if shape information is only 2 dimensional, this is grayscale | |||
| if (input_cv->Rank() == 3 && input_cv->shape()[2] == 1 && output_cv->Rank() == 2) output_cv->ExpandDim(2); | |||
| *output = std::static_pointer_cast<Tensor>(output_cv); | |||
| return Status::OK(); | |||
| } catch (const cv::Exception &e) { | |||
| RETURN_STATUS_UNEXPECTED("Unexpected error in pad"); | |||
| @@ -108,9 +108,42 @@ def test_center_crop_comp(height=375, width=375, plot=False): | |||
| visualize(image, image_cropped) | |||
| def test_crop_grayscale(height=375, width=375): | |||
| """ | |||
| Test that centercrop works with pad and grayscale images | |||
| """ | |||
| def channel_swap(image): | |||
| """ | |||
| Py func hack for our pytransforms to work with c transforms | |||
| """ | |||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||
| transforms = [ | |||
| py_vision.Decode(), | |||
| py_vision.Grayscale(1), | |||
| py_vision.ToTensor(), | |||
| (lambda image: channel_swap(image)) | |||
| ] | |||
| transform = py_vision.ComposeOp(transforms) | |||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||
| # if input is grayscale, the output dimensions should be single channel | |||
| crop_gray = vision.CenterCrop([height, width]) | |||
| data1 = data1.map(input_columns=["image"], operations=crop_gray) | |||
| for item1 in data1.create_dict_iterator(): | |||
| c_image = item1["image"] | |||
| # check that the image is grayscale | |||
| assert (len(c_image.shape) == 3 and c_image.shape[2] == 1) | |||
| if __name__ == "__main__": | |||
| test_center_crop_op(600, 600) | |||
| test_center_crop_op(300, 600) | |||
| test_center_crop_op(600, 300) | |||
| test_center_crop_md5(600, 600) | |||
| test_center_crop_md5() | |||
| test_center_crop_comp() | |||
| test_crop_grayscale() | |||
| @@ -22,34 +22,11 @@ import numpy as np | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.py_transforms as py_vision | |||
| from mindspore import log as logger | |||
| from util import diff_mse | |||
| DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | |||
| SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | |||
| def visualize(first, mse, second): | |||
| """ | |||
| visualizes the image using DE op and enCV | |||
| """ | |||
| plt.subplot(141) | |||
| plt.imshow(first) | |||
| plt.title("c transformed image") | |||
| plt.subplot(142) | |||
| plt.imshow(second) | |||
| plt.title("py random_color_jitter image") | |||
| plt.subplot(143) | |||
| plt.imshow(first - second) | |||
| plt.title("Difference image, mse : {}".format(mse)) | |||
| plt.show() | |||
| def diff_mse(in1, in2): | |||
| mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean() | |||
| return mse * 100 | |||
| def test_pad_op(): | |||
| """ | |||
| Test Pad op | |||
| @@ -77,9 +54,7 @@ def test_pad_op(): | |||
| data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data2 = data2.map(input_columns=["image"], operations=transform()) | |||
| num_iter = 0 | |||
| for item1, item2 in zip(data1.create_dict_iterator(), data2.create_dict_iterator()): | |||
| num_iter += 1 | |||
| c_image = item1["image"] | |||
| py_image = (item2["image"].transpose(1, 2, 0) * 255).astype(np.uint8) | |||
| @@ -89,11 +64,60 @@ def test_pad_op(): | |||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | |||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | |||
| diff = c_image - py_image | |||
| mse = diff_mse(c_image, py_image) | |||
| logger.info("mse is {}".format(mse)) | |||
| assert mse < 0.01 | |||
| def test_pad_grayscale(): | |||
| """ | |||
| Tests that the pad works for grayscale images | |||
| """ | |||
| def channel_swap(image): | |||
| """ | |||
| Py func hack for our pytransforms to work with c transforms | |||
| """ | |||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||
| transforms = [ | |||
| py_vision.Decode(), | |||
| py_vision.Grayscale(1), | |||
| py_vision.ToTensor(), | |||
| (lambda image: channel_swap(image)) | |||
| ] | |||
| transform = py_vision.ComposeOp(transforms) | |||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||
| # if input is grayscale, the output dimensions should be single channel | |||
| pad_gray = c_vision.Pad(100, fill_value=(20, 20, 20)) | |||
| data1 = data1.map(input_columns=["image"], operations=pad_gray) | |||
| dataset_shape_1 = [] | |||
| for item1 in data1.create_dict_iterator(): | |||
| c_image = item1["image"] | |||
| dataset_shape_1.append(c_image.shape) | |||
| # Dataset for comparison | |||
| data2 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| decode_op = c_vision.Decode() | |||
| # we use the same padding logic | |||
| ctrans = [decode_op, pad_gray] | |||
| dataset_shape_2 = [] | |||
| data2 = data2.map(input_columns=["image"], operations=ctrans) | |||
| for item2 in data2.create_dict_iterator(): | |||
| c_image = item2["image"] | |||
| dataset_shape_2.append(c_image.shape) | |||
| for shape1, shape2 in zip(dataset_shape_1, dataset_shape_2): | |||
| # validate that the first two dimensions are the same | |||
| # we have a little inconsistency here because the third dimension is 1 after py_vision.Grayscale | |||
| assert (shape1[0:1] == shape2[0:1]) | |||
| if __name__ == "__main__": | |||
| test_pad_op() | |||
| test_pad_grayscale() | |||
| @@ -22,6 +22,7 @@ import numpy as np | |||
| import mindspore.dataset as ds | |||
| import mindspore.dataset.transforms.vision.py_transforms as py_vision | |||
| from mindspore import log as logger | |||
| from util import diff_mse | |||
| DATA_DIR = ["../data/dataset/test_tf_file_3_images/train-0000-of-0001.data"] | |||
| SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | |||
| @@ -29,7 +30,7 @@ SCHEMA_DIR = "../data/dataset/test_tf_file_3_images/datasetSchema.json" | |||
| def visualize(first, mse, second): | |||
| """ | |||
| visualizes the image using DE op and enCV | |||
| visualizes the image using DE op and OpenCV | |||
| """ | |||
| plt.subplot(141) | |||
| plt.imshow(first) | |||
| @@ -45,12 +46,7 @@ def visualize(first, mse, second): | |||
| plt.show() | |||
| def diff_mse(in1, in2): | |||
| mse = (np.square(in1.astype(float) / 255 - in2.astype(float) / 255)).mean() | |||
| return mse * 100 | |||
| def test_random_color_adjust_op_brightness(): | |||
| def test_random_color_adjust_op_brightness(plot=False): | |||
| """ | |||
| Test RandomColorAdjust op | |||
| """ | |||
| @@ -92,15 +88,16 @@ def test_random_color_adjust_op_brightness(): | |||
| mse = diff_mse(c_image, py_image) | |||
| logger.info("mse is {}".format(mse)) | |||
| logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||
| assert mse < 0.01 | |||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||
| # if mse != 0: | |||
| # logger.info("mse is: {}".format(mse)) | |||
| # Uncomment below line if you want to visualize images | |||
| # visualize(c_image, mse, py_image) | |||
| if plot: | |||
| visualize(c_image, mse, py_image) | |||
| def test_random_color_adjust_op_contrast(): | |||
| def test_random_color_adjust_op_contrast(plot=False): | |||
| """ | |||
| Test RandomColorAdjust op | |||
| """ | |||
| @@ -139,11 +136,10 @@ def test_random_color_adjust_op_contrast(): | |||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | |||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | |||
| diff = c_image - py_image | |||
| logger.info("contrast difference c is : {}".format(c_image[0][0])) | |||
| logger.info("contrast difference py is : {}".format(py_image[0][0])) | |||
| diff = c_image - py_image | |||
| logger.info("contrast difference is : {}".format(diff[0][0])) | |||
| # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | |||
| mse = diff_mse(c_image, py_image) | |||
| @@ -152,11 +148,11 @@ def test_random_color_adjust_op_contrast(): | |||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||
| # if mse != 0: | |||
| # logger.info("mse is: {}".format(mse)) | |||
| # Uncomment below line if you want to visualize images | |||
| # visualize(c_image, mse, py_image) | |||
| if plot: | |||
| visualize(c_image, mse, py_image) | |||
| def test_random_color_adjust_op_saturation(): | |||
| def test_random_color_adjust_op_saturation(plot=False): | |||
| """ | |||
| Test RandomColorAdjust op | |||
| """ | |||
| @@ -197,19 +193,17 @@ def test_random_color_adjust_op_saturation(): | |||
| logger.info("dtype of c_image: {}".format(c_image.dtype)) | |||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | |||
| diff = c_image - py_image | |||
| mse = diff_mse(c_image, py_image) | |||
| logger.info("mse is {}".format(mse)) | |||
| assert mse < 0.01 | |||
| # logger.info("random_rotation_op_{}, mse: {}".format(num_iter + 1, mse)) | |||
| # if mse != 0: | |||
| # logger.info("mse is: {}".format(mse)) | |||
| # Uncomment below line if you want to visualize images | |||
| # visualize(c_image, mse, py_image) | |||
| if plot: | |||
| visualize(c_image, mse, py_image) | |||
| def test_random_color_adjust_op_hue(): | |||
| def test_random_color_adjust_op_hue(plot=False): | |||
| """ | |||
| Test RandomColorAdjust op | |||
| """ | |||
| @@ -251,13 +245,45 @@ def test_random_color_adjust_op_hue(): | |||
| logger.info("dtype of py_image: {}".format(py_image.dtype)) | |||
| # logger.info("dtype of img: {}".format(img.dtype)) | |||
| diff = c_image - py_image | |||
| # mse = (np.sum(np.power(diff, 2))) / (c_image.shape[0] * c_image.shape[1]) | |||
| mse = diff_mse(c_image, py_image) | |||
| logger.info("mse is {}".format(mse)) | |||
| assert mse < 0.01 | |||
| # Uncomment below line if you want to visualize images | |||
| # visualize(c_image, mse, py_image) | |||
| if plot: | |||
| visualize(c_image, mse, py_image) | |||
| def test_random_color_adjust_grayscale(): | |||
| """ | |||
| Tests that the random color adjust works for grayscale images | |||
| """ | |||
| def channel_swap(image): | |||
| """ | |||
| Py func hack for our pytransforms to work with c transforms | |||
| """ | |||
| return (image.transpose(1, 2, 0) * 255).astype(np.uint8) | |||
| transforms = [ | |||
| py_vision.Decode(), | |||
| py_vision.Grayscale(1), | |||
| py_vision.ToTensor(), | |||
| (lambda image: channel_swap(image)) | |||
| ] | |||
| transform = py_vision.ComposeOp(transforms) | |||
| data1 = ds.TFRecordDataset(DATA_DIR, SCHEMA_DIR, columns_list=["image"], shuffle=False) | |||
| data1 = data1.map(input_columns=["image"], operations=transform()) | |||
| # if input is grayscale, the output dimensions should be single channel, the following should fail | |||
| random_adjust_op = c_vision.RandomColorAdjust((1, 1), (1, 1), (1, 1), (0.2, 0.2)) | |||
| try: | |||
| data1 = data1.map(input_columns=["image"], operations=random_adjust_op) | |||
| dataset_shape_1 = [] | |||
| for item1 in data1.create_dict_iterator(): | |||
| c_image = item1["image"] | |||
| dataset_shape_1.append(c_image.shape) | |||
| except BaseException as e: | |||
| logger.info("Got an exception in DE: {}".format(str(e))) | |||
| if __name__ == "__main__": | |||
| @@ -265,3 +291,4 @@ if __name__ == "__main__": | |||
| test_random_color_adjust_op_contrast() | |||
| test_random_color_adjust_op_saturation() | |||
| test_random_color_adjust_op_hue() | |||
| test_random_color_adjust_grayscale() | |||