| @@ -0,0 +1,132 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h" | |||||
| #include <vector> | |||||
| #include <string> | |||||
| #include <memory> | |||||
| #include "utils/utils.h" | |||||
| #include "utils/context/ms_context.h" | |||||
| #include "common/utils.h" | |||||
| #include "pre_activate/common/helper.h" | |||||
| #include "device/kernel_info.h" | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| namespace { | |||||
| void CreateOutputsOfUpdateGrad(const FuncGraphPtr &graph, const CNodePtr &bn_grad_node, | |||||
| std::vector<AnfNodePtr> *bn_update_grad_outputs) { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(bn_grad_node); | |||||
| auto bn_grad_inputs = bn_grad_node->inputs(); | |||||
| if (bn_grad_inputs.size() < kBNGradInputNum) { | |||||
| MS_LOG(EXCEPTION) << "BNGrad has wrong inputs size"; | |||||
| } | |||||
| std::vector<AnfNodePtr> bn_update_grad_inputs = { | |||||
| NewValueNode(std::make_shared<Primitive>(kBNTrainingUpdateGradOpName)), bn_grad_inputs[1], bn_grad_inputs[2], | |||||
| bn_grad_inputs[4], bn_grad_inputs[5]}; | |||||
| auto bn_update_grad = graph->NewCNode(bn_update_grad_inputs); | |||||
| MS_EXCEPTION_IF_NULL(bn_update_grad); | |||||
| bn_update_grad->set_kernel_info(std::make_shared<device::KernelInfo>()); | |||||
| bn_update_grad->set_scope(bn_grad_node->scope()); | |||||
| auto types = {AnfAlgo::GetOutputInferDataType(bn_grad_node, 1), AnfAlgo::GetOutputInferDataType(bn_grad_node, 2)}; | |||||
| auto shapes = {AnfAlgo::GetOutputInferShape(bn_grad_node, 1), AnfAlgo::GetOutputInferShape(bn_grad_node, 2)}; | |||||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, bn_update_grad.get()); | |||||
| AnfAlgo::CopyNodeAttr(kAttrEpsilon, bn_grad_node, bn_update_grad); | |||||
| CreateMultipleOutputsOfAnfNode(graph, bn_update_grad, kBNTrainingUpdateGradOutputNum, bn_update_grad_outputs); | |||||
| } | |||||
| void CreateOutputsOfReduceGrad(const FuncGraphPtr &graph, const CNodePtr &bn_grad_node, | |||||
| const std::vector<AnfNodePtr> &bn_update_grad_outputs, | |||||
| std::vector<AnfNodePtr> *bn_reduce_grad_outputs) { | |||||
| MS_EXCEPTION_IF_NULL(graph); | |||||
| MS_EXCEPTION_IF_NULL(bn_grad_node); | |||||
| auto bn_grad_inputs = bn_grad_node->inputs(); | |||||
| if (bn_grad_inputs.size() < kBNGradInputNum) { | |||||
| MS_LOG(EXCEPTION) << "BNGrad has wrong inputs size"; | |||||
| } | |||||
| if (bn_update_grad_outputs.size() != kBNTrainingUpdateGradOutputNum) { | |||||
| MS_LOG(EXCEPTION) << "BNTrainingReduceGrad_outputs has wrong size"; | |||||
| } | |||||
| std::vector<AnfNodePtr> bn_reduce_grad_inputs = { | |||||
| NewValueNode(std::make_shared<Primitive>(kBNTrainingReduceGradOpName)), | |||||
| bn_grad_inputs[1], | |||||
| bn_grad_inputs[2], | |||||
| bn_update_grad_outputs[0], | |||||
| bn_update_grad_outputs[1], | |||||
| bn_grad_inputs[3], | |||||
| bn_grad_inputs[4], | |||||
| bn_grad_inputs[5]}; | |||||
| auto bn_reduce_grad = graph->NewCNode(bn_reduce_grad_inputs); | |||||
| MS_EXCEPTION_IF_NULL(bn_reduce_grad); | |||||
| bn_reduce_grad->set_kernel_info(std::make_shared<device::KernelInfo>()); | |||||
| bn_reduce_grad->set_scope(bn_grad_node->scope()); | |||||
| auto types = {AnfAlgo::GetOutputInferDataType(bn_grad_node, 0)}; | |||||
| auto shapes = {AnfAlgo::GetOutputInferShape(bn_grad_node, 0)}; | |||||
| AnfAlgo::SetOutputInferTypeAndShape(types, shapes, bn_reduce_grad.get()); | |||||
| AnfAlgo::CopyNodeAttr(kAttrEpsilon, bn_grad_node, bn_reduce_grad); | |||||
| (*bn_reduce_grad_outputs).push_back(bn_reduce_grad); | |||||
| } | |||||
| } // namespace | |||||
| const BaseRef BatchNormGradSplit::DefinePattern() const { | |||||
| VarPtr Xs = std::make_shared<SeqVar>(); | |||||
| auto prim = std::make_shared<Primitive>(kBatchNormGradOpName); | |||||
| return VectorRef({prim, Xs}); | |||||
| } | |||||
| const AnfNodePtr BatchNormGradSplit::Process(const FuncGraphPtr &func_graph, const AnfNodePtr &node, | |||||
| const EquivPtr &) const { | |||||
| MS_EXCEPTION_IF_NULL(node); | |||||
| MS_EXCEPTION_IF_NULL(func_graph); | |||||
| auto cnode = node->cast<CNodePtr>(); | |||||
| MS_EXCEPTION_IF_NULL(cnode); | |||||
| auto primitive = AnfAlgo::GetCNodePrimitive(cnode); | |||||
| MS_EXCEPTION_IF_NULL(primitive); | |||||
| if (!primitive->HasAttr(kAttrIsTraining)) { | |||||
| MS_LOG(INFO) << "Op BatchNormGrad must have attrs of is_training"; | |||||
| return nullptr; | |||||
| } | |||||
| if (!AnfAlgo::GetNodeAttr<bool>(cnode, kAttrIsTraining)) { | |||||
| MS_LOG(INFO) << "is_training must be true"; | |||||
| return nullptr; | |||||
| } | |||||
| std::vector<AnfNodePtr> bn_update_grad_outputs; | |||||
| CreateOutputsOfUpdateGrad(func_graph, cnode, &bn_update_grad_outputs); | |||||
| if (bn_update_grad_outputs.size() != kBNTrainingUpdateGradOutputNum) { | |||||
| MS_LOG(EXCEPTION) << "bn_update_grad_outputs has wrong size"; | |||||
| } | |||||
| std::vector<AnfNodePtr> bn_reduce_grad_outputs; | |||||
| CreateOutputsOfReduceGrad(func_graph, cnode, bn_update_grad_outputs, &bn_reduce_grad_outputs); | |||||
| if (bn_reduce_grad_outputs.size() != kSingleOutputNum) { | |||||
| MS_LOG(EXCEPTION) << "bn_reduce_grad_outputs has wrong size"; | |||||
| } | |||||
| std::vector<AnfNodePtr> make_tuple_inputs = {NewValueNode(prim::kPrimMakeTuple), bn_reduce_grad_outputs[0], | |||||
| bn_update_grad_outputs[0], bn_update_grad_outputs[1]}; | |||||
| auto make_tuple = func_graph->NewCNode(make_tuple_inputs); | |||||
| return make_tuple; | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,33 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #ifndef MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_ | |||||
| #define MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_ | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| #include "pre_activate/common/helper.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class BatchNormGradSplit : public PatternProcessPass { | |||||
| public: | |||||
| explicit BatchNormGradSplit(bool multigraph = true) : PatternProcessPass("batch_norm_grad_split", multigraph) {} | |||||
| ~BatchNormGradSplit() override = default; | |||||
| const BaseRef DefinePattern() const override; | |||||
| const AnfNodePtr Process(const FuncGraphPtr &, const AnfNodePtr &, const EquivPtr &) const override; | |||||
| }; | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| #endif // MINDSPORE_CCSRC_PRE_ACTIVATE_ASCEND_IR_FISSION_BATCH_NORM_GRAD_SPLIT_H_ | |||||
| @@ -107,6 +107,7 @@ constexpr auto kLambNextMVOpName = "LambNextMV"; | |||||
| constexpr auto kConfusionTransposeDOpName = "ConfusionTransposeD"; | constexpr auto kConfusionTransposeDOpName = "ConfusionTransposeD"; | ||||
| constexpr auto kAdamApplyOneWithDecayOpName = "AdamApplyOneWithDecay"; | constexpr auto kAdamApplyOneWithDecayOpName = "AdamApplyOneWithDecay"; | ||||
| constexpr auto kBatchNormOpName = "BatchNorm"; | constexpr auto kBatchNormOpName = "BatchNorm"; | ||||
| constexpr auto kBatchNormGradOpName = "BatchNormGrad"; | |||||
| constexpr auto kAdamApplyOneOpName = "AdamApplyOne"; | constexpr auto kAdamApplyOneOpName = "AdamApplyOne"; | ||||
| constexpr auto kDropoutGenMask = "DropoutGenMask"; | constexpr auto kDropoutGenMask = "DropoutGenMask"; | ||||
| constexpr auto kResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; | constexpr auto kResizeNearestNeighborGrad = "ResizeNearestNeighborGrad"; | ||||
| @@ -162,6 +163,7 @@ constexpr auto kAttrLabelForInsertStreamActive = "label_for_insert_stream_active | |||||
| constexpr auto kAttrFusion = "fusion"; | constexpr auto kAttrFusion = "fusion"; | ||||
| constexpr auto kAttrGroup = "group"; | constexpr auto kAttrGroup = "group"; | ||||
| constexpr auto kAttrOp = "op"; | constexpr auto kAttrOp = "op"; | ||||
| constexpr auto kAttrIsTraining = "is_training"; | |||||
| // attr value | // attr value | ||||
| constexpr auto kValueTargetSwitch = "target_switch"; | constexpr auto kValueTargetSwitch = "target_switch"; | ||||
| @@ -0,0 +1,59 @@ | |||||
| /** | |||||
| * Copyright 2020 Huawei Technologies Co., Ltd | |||||
| * | |||||
| * Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| * you may not use this file except in compliance with the License. | |||||
| * You may obtain a copy of the License at | |||||
| * | |||||
| * http://www.apache.org/licenses/LICENSE-2.0 | |||||
| * | |||||
| * Unless required by applicable law or agreed to in writing, software | |||||
| * distributed under the License is distributed on an "AS IS" BASIS, | |||||
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| * See the License for the specific language governing permissions and | |||||
| * limitations under the License. | |||||
| */ | |||||
| #include "common/backend_common_test.h" | |||||
| #include "common/py_func_graph_fetcher.h" | |||||
| #include "operator/ops.h" | |||||
| #include "ir/meta_tensor.h" | |||||
| #include "debug/anf_ir_dump.h" | |||||
| #include "utils/utils.h" | |||||
| #include "pre_activate/common/optimizer.h" | |||||
| #include "pre_activate/ascend/ir_fission/batch_norm_grad_split.h" | |||||
| #include "session/anf_runtime_algorithm.h" | |||||
| namespace mindspore { | |||||
| namespace opt { | |||||
| class TestHWBatchNormGradSplit : public BackendCommon { | |||||
| public: | |||||
| TestHWBatchNormGradSplit() : get_py_fun_("gtest_input.pre_activate.batch_norm_grad_split", true) {} | |||||
| public: | |||||
| UT::PyFuncGraphFetcher get_py_fun_; | |||||
| }; | |||||
| TEST_F(TestHWBatchNormGradSplit, test_split) { | |||||
| get_py_fun_.SetDoResolve(true); | |||||
| FuncGraphPtr g = get_py_fun_.CallAndParseRet("test_batch_norm_grad_split", "before"); | |||||
| EXPECT_NE(g, nullptr); | |||||
| std::vector<int> shp_x{1, 64, 112, 112}; | |||||
| std::vector<int> shp_b{64}; | |||||
| auto x_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_x); | |||||
| auto b_abstract = std::make_shared<abstract::AbstractTensor>(kFloat32, shp_b); | |||||
| AbstractBasePtrList args_spec_list{x_abstract, x_abstract, b_abstract, b_abstract, b_abstract, b_abstract}; | |||||
| auto kernel_graph = GetKernelGraph(g, args_spec_list); | |||||
| EXPECT_NE(kernel_graph, nullptr); | |||||
| auto optimizer = std::make_shared<opt::GraphOptimizer>(); | |||||
| auto pm = std::make_shared<opt::PassManager>(); | |||||
| auto pass = std::make_shared<opt::BatchNormGradSplit>(); | |||||
| pm->AddPass(pass); | |||||
| optimizer->AddPassManager(pm); | |||||
| auto new_graph = optimizer->Optimize(kernel_graph); | |||||
| FuncGraphPtr g_after = get_py_fun_.CallAndParseRet("test_batch_norm_grad_split", "after"); | |||||
| EXPECT_TRUE(CheckEqualGraph(g_after, new_graph)); | |||||
| } | |||||
| } // namespace opt | |||||
| } // namespace mindspore | |||||
| @@ -0,0 +1,61 @@ | |||||
| # Copyright 2020 Huawei Technologies Co., Ltd | |||||
| # | |||||
| # Licensed under the Apache License, Version 2.0 (the "License"); | |||||
| # you may not use this file except in compliance with the License. | |||||
| # You may obtain a copy of the License at | |||||
| # | |||||
| # http://www.apache.org/licenses/LICENSE-2.0 | |||||
| # | |||||
| # Unless required by applicable law or agreed to in writing, software | |||||
| # distributed under the License is distributed on an "AS IS" BASIS, | |||||
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||||
| # See the License for the specific language governing permissions and | |||||
| # limitations under the License. | |||||
| # ============================================================================ | |||||
| from mindspore.ops import operations as P | |||||
| from mindspore.ops.operations import _grad_ops as G | |||||
| from mindspore.ops import Primitive | |||||
| batch_norm_grad = G.BatchNormGrad(is_training=True) | |||||
| bn_training_update_grad = Primitive('BNTrainingUpdateGrad') | |||||
| bn_training_reduce_grad = Primitive('BNTrainingReduceGrad') | |||||
| make_tuple = Primitive('make_tuple') | |||||
| tuple_getitem = Primitive('tuple_getitem') | |||||
| class FnDict: | |||||
| def __init__(self): | |||||
| self.fnDict = {} | |||||
| def __call__(self, fn): | |||||
| self.fnDict[fn.__name__] = fn | |||||
| def __getitem__(self, name): | |||||
| return self.fnDict[name] | |||||
| def test_batch_norm_grad_split(tag): | |||||
| fns = FnDict() | |||||
| @fns | |||||
| def before(i0, i1, i2, i3, i4, i5): | |||||
| bn_grad_output = batch_norm_grad(i0, i1, i2, i3, i4, i5) | |||||
| item0 = tuple_getitem(bn_grad_output, 0) | |||||
| item1 = tuple_getitem(bn_grad_output, 1) | |||||
| item2 = tuple_getitem(bn_grad_output, 2) | |||||
| output = make_tuple(item0, item1, item2) | |||||
| return output | |||||
| @fns | |||||
| def after(i0, i1, i2, i3, i4, i5): | |||||
| bn_update_grad_output = bn_training_update_grad(i0, i1, i3, i4) | |||||
| update_item0 = tuple_getitem(bn_update_grad_output, 0) | |||||
| update_item1 = tuple_getitem(bn_update_grad_output, 1) | |||||
| bn_reduce_grad_output = bn_training_reduce_grad(i0, i1, update_item0, update_item1, i2, i3, i4) | |||||
| output = make_tuple(bn_reduce_grad_output, update_item0, update_item1) | |||||
| item0 = tuple_getitem(output, 0) | |||||
| item1 = tuple_getitem(output, 1) | |||||
| item2 = tuple_getitem(output, 2) | |||||
| output = make_tuple(item0, item1, item2) | |||||
| return make_tuple(output) | |||||
| return fns[tag] | |||||